Agilent X-Series
Signal Analyzer

This manual provides documentation for the
following X-Series Analyzers:

EXA Signal Analyzer N9010A

MXA Signal Analyzer N9020A

X-Series Programmer’s Guide

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2008, 2009

No part of thismanual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transda-
tion into aforeign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Trademark
Acknowledgements

Microsoft® isaU.S. registered
trademark of Microsoft Corporation.

Windows® and MS Windows® are
U.S. registered trademarks of
Microsoft Corporation.

Adobe Reader® isa U.S. registered
trademark of Adobe System
Incorporated.

Java™ isaU.S. trademark of Sun
Microsystems, Inc.

MATLAB® isaU.S. registered
trademark of Math Works, Inc.

Norton Ghost™ isa U.S. trademark
of Symantec Corporation.

Manual Part Number

N9020-90104
Supersedes:N9020-90084

Print Date

February 2009
Printed in USA

Agilent Technologies, Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

Thematerial contained in this doc-
ument isprovided “asis,” and is
subject to being changed, without
notice, in future editions. Further,
to the maximum extent permitted
by applicablelaw, Agilent disclaims
all warranties, either expressor
implied, with regard to thismanual
and any information contained
herein, including but not limited to
theimplied warranties of mer-
chantability and fitnessfor a par-
ticular purpose. Agilent shall not
beliablefor errorsor for incidental
or consequential damagesin con-
nection with the furnishing, use, or
per for mance of thisdocument or of
any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the mate-
rial in this document that conflict
with these terms, the warranty
termsin the separ ate agreement
shall contral.

Technology Licenses

The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in

accordance with the terms of such license.

Restricted Rights L egend

If software isfor use in the performance
of aU.S. Government prime contract or
subcontract, Software is delivered and

licensed as “Commercial computer soft-

ware” as defined in DFAR 252.227-7014
(June 1995), or asa“commercial item” as
defined in FAR 2.101(a) or as* Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Softwareis
subject to Agilent Technologies' standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S.
Government will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov-
ernment userswill receive no greater than
Limited Rights as defined in FAR 52.227-
14 (June 1987) or DFAR 252.227-7015
(b)(2) (November 1995), as applicablein
any technical data.

Safety Notices
CAUTION:

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in damage to the product or 10ss of
important data. Do not proceed
beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

WARNING:

A WARNING notice denotesa
hazard. It calls attention to an
operating procedure, practice,
or thelikethat, if not correctly
performed or adhered to, could
result in personal injury or
death. Do not proceed beyond a
WARNING notice until theindi-
cated conditionsare fully
understood and met.

Warranty

This Agilent technologies instrument product is warranted against defects in material
and workmanship for a period of one year from the date of shipment. During the
warranty period, Agilent Technologies will, at its option, either repair or replace
products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility
designated by Agilent Technologies. Buyer shall prepay shipping chargesto Agilent
Technologies and Agilent Technologies shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to Agilent Technologies from another country.

Whereto Find the L atest | nformation

Documentation is updated periodically. For the latest information about this analyzer,
including firmware upgrades, application information, and product information, see
thefollowing URLS:

http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa

To receive the latest updates by email, subscribe to Agilent Email Updates:
http://www.agilent.com/find/email updates
Information on preventing analyzer damage can be found at:

http://www.agilent.com/find/tips

http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa
http://www.agilent.com/find/tips
http://www.agilent.com/find/emailupdates
http://www.agilent.com/find/tips
http://www.agilent.com/find/exa

Contents

1. Introduction to Programming X-Series Applications

What Programming InformationisAvailable?. i 8
Using Embedded Help for Programmingt e e e e 9
Usingthe Help System on Your PCo e e e e 9
Help System Features Especially Useful for Programmers 9
Communicating SCPI Using Telneto o e e e e e 12
Overview of the GPIB 15
GPIB Command SatementSo e ettt e e 15
SCPI Measurement COmMMAaNGS oottt ettt e e e ettt e 17
Measurement Group Of COMMaNdSottt e e e 17
Common Measurement COMMANGS ottt e e ettt e 21

2. Programming Fundamentals

SCPI LangUage BaSiCS oottt e e e 34
Command Keywords and SYNtaX oo uu et e e 34
Creating Valid ComMmMandso e e e 35
Special Charactersin Commands oottt 35
Parametersin CommandsSot 36
Putting Multiple CommandsontheSameLine i e 39

Improving Measurement SPEEdottt 41
Turn off thedisplay UPAaeSo 41
Use binary dataformat instead of ASCII o 41
Minimize the number of GPIB transaCtionsttt 42
Consider using USB or LAN instead of GPIB e 43
Minimize DUT/instrument Setup Changes.ot te 43
AVOId UNNECESSANY USE Of X RST . oot e e 43
Avoid automatic attenuator SELtING oot e e 43
Avoid using RFBurst trigger for singleburst signalso 44
N9071A: Optimize your GSM output RF spectrum switching measurement 45
Making power measurements on multiple bursts or slots? Use CAL Culate:DATA<n>:COMPress? . . . 45
FOr More Informationo e e e e 47

Programmingin CUSINGthe VL e 48
Typical Example Program CONtentSottt e e 48
LinkKingto VTL Librarieso e e e e e e 49
Compilingand Linking @aVTL Program.t e i 49
EXaMPle Programo 51
Including the VISA DeclarationsFile.o 51
OPENING B SESTION . .« . ottt ettt et e e e e e e e e e e 52
DEVICE SESSIONS. . . o e ettt et e 52
AdAresSiNg @ SESSION. . . . oottt e e 54
ClOSING B SESSION & .\ ittt ettt e e e e e e 55

For More Information oo e e 56

STATus Subsystem (No equivalent front-panel keys) e 57
Detalled DEsCriptionttt e 59
STATus Subsystem Command DeSCriptioNS. vttt 70

Contents

3. Programming Examples
X-Series Spectrum Analyzer Mode Programing Exampl
89601X VXA Signal Analyzer Programming Examples

[

Introduction to Programming X-Series
Applications

This chapter provides overall information regarding programming the Agilent
X-Series Signal Analyzerswith SCPI, and how to use the programming
documentation provided with your product.gm

Introduction to Programming X-Series Applications
What Programming Information is Available?

What Programming I nformation is Available?

The X-Series Documentation can be accessed through the Additional
Documentation page in the instrument Help system and isincluded on the
Documentation CD shipped with the instrument. It can also be found in the
instrument at; C:\ProgramsFiles\Agilent\SignalAnalysis\
Infrastructure\Help\otherdocs, or online at:
http://www.agilent.com/find/mxa_manuals.

The following resources are available to help you create programs for automating
your X-Series measurements:

Resource

Description

X-Series
Programmer’s Guide

User’'sand
Programmer’s
Reference manuals

Embedded Help in
your instrument

X-Series Getting
Sarted Guide

Agilent Application
Notes

Agilent VISA User’'s
Guide

Provides general SCPI programming information on the following topics:

* Programming the X-Series Applications
» Programming fundamentals
* Programming examples

Note that SCPI command descriptions for measurement applications are NOT in this book,
but arein the User’'s and Programmer’s Reference.

Describes al front-panel keys and softkeys, including SCPI commands for a measurement
application. Note that:

» Each measurement application has its own User’s and Programmer’s Reference.
» Thecontent in this manual is duplicated in the analyzer’s Help (the Help that you see
for akey isidentical to what you see in this manual).

Describes all front-panel keys and softkeys, including SCPI commands, for a measurement
application.

Note that the content that you see in Help when you press akey isidentical to what you see
in the User’s and Programmer’s Reference.

Provides valuable sections related to programming including:

» Licensing New Measurement Application Software - After Initial Purchase

e Configuring instrument LAN Hosthame, IP Address, and Gateway Address

» Using the Windows X P Remote Desktop to connect to the instrument remotely
e Using the Embedded Web Server Telnet connection to communicate SCPI

This printed document is shipped with the instrument.

Printable PDF versions of pertinent application notes.

Describes the Agilent Virtual Instrument Software Architecture (VISA) library and shows
how to useit to develop /O applications and instrument drivers on Windows PCs.

8 Chapter 1

http://www.agilent.com/find/mxa_manuals
http://www.agilent.com/find/mxa_manuals
http://www.agilent.com/find/mxa_manuals

Introduction to Programming X-Series Applications
Using Embedded Help for Programming

Using Embedded Help for Programming

The embedded Help system in your analyzer contains context-sensitive reference
information for each installed measurement application. To see the Help topic for
an active function or key, press the green Help key once the measurement
application is open.

Using the Help System on Your PC

The Compiled Help Metafile (CHM) is also provided on the Documentation CD.
This enables you to access the file locally on your PC. In Microsoft Windows, use
Windows Explorer to navigate to the <mode name>.chm file onthe CD, and
double-click the file to launch the Help file.

Help System Features Especially Useful for Programmers

Help System Contents Pane

The programming-specific features described below are shown in the Help system
Contents Pane.

* “Help Topics’ on page 10
e “List of Commands’ on page 11
¢ A Section called *Remote Only Commands’ may be shown.

Example Help System “ Contents’ Pane

E? Spectrum Analyzer Mode Help

Hide Black Print Qptionz

Contents |Inde>: I §earch| Favor_itesl

e L E’IF'
@ About the Analyzer
@ additional Documentation
@ Ahout the Spectrum dnalyzer Meas
@ Swpstern Functions
= m Pragrarming the Analyzer
@ "What Programming |nformation
@ List of Cammands
@ S5TATus Subzystem [MNo equiva
@ IEEE Common GPIE Commands
@ Swept 54
@ Channel Power Measurement
@ Occupied Bandwidth Measurement
@ ACP Measurement
@ Power Stat CCOF Measursment
@ Burst Power [Transmit Power)
@ Spurious Emissions Measurement
@ Spectum Emission Mask Measuren
@ List Sweep e

@ Common Measurement Functinns_lll
| ’

4]

-

Chapter 1 9

Introduction to Programming X-Series Applications
Using Embedded Help for Programming

Help Topics

Included in each Help topic are:

» Definitions for the current active function or Key

» SCPI Command parameters, including limits, presets, variables, and queries

» Associated Remote-Only commands (if used)

ExampleHelp Topic - Scale/Div Window

Scale / Div

Sets the units perwertical graticule division on the display. This function is only
available when Scale Type (Log) is selected and the vertical scale s power.
When Scale Type (Lin)is selected, Scale/Divis grayed out.

Remote Command:

:DISPlay:WINDow[1l] : TRACe:Y
[:SCALe] :PDIVision <rel ampl>

:DISPlay:WINDow|[1l] :TRACe:Y
[:85CALe] :PDIVision?

Example:

DISPWIND TRACY POV 5 DB

Dependencies/Couplings:

Scale/Divis grayed outin linear Y scale. Sending
the equivalent SCPI command does change the
Scale/Div, though it has no affect while in Lin.

Prasat:

10.00 dE / Div

State Saved:

Saved in State

hdin: 010 dE
Ml 20dE
Key Path: AMPTD Y Scale

Instrument SAN Revision:

Friorto A.02.00

10

Chapter 1

Introduction to Programming X-Series Applications
Using Embedded Help for Programming

List of Commands

The List of Commandsis an aphabetically sorted list of all commandsin the
current measurement application. Each listing shown is alink to the specific Help
Topic that contains the command or query.

Example List of Commands

=
)
il
-2

+
i
0
i)
-0

4
i
0
i

+
i

PT?

TRCL <redister #=

TRST

oAV <reqister #=

S1BY

TRG

A

ABORL

CAL Culate ACPower LIMIt STATe OFF[DMN|0]]
CALCUlate ACPower LIMITSTA T

(CAL Culate ACPower MARKer AOFFE

(CAL Culate ACPower MARKer COUPIe[STATe] OMNOEF]1]0
CALCulate ACPowerMARKer COURIe[STATE]?

NOTE You can query the analyzer for al supported SCPI commands in the current mode
by sending the “ SYST : HELP : HEAD?” query. For details on how to query the
instrument see “Communicating SCPI Using Telnet” on page 12.

Chapter 1 11

NOTE

Sep 1.

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

Communicating SCPI Using Telnet

You can communicate SCPI using a Telnet connection from your PC to the
analyzer. The following procedure describes connecting a PC with a Windows
operating system to the analyzer. You will need to know the | P address of the
analyzer.

In addition to the procedure described below, you can open a Telnet connection
with the analyzer using an internet connection to the Embedded Web Server. This
procedure is described in the Getting Started guide.

To initiate a Telnet session and communicate SCPI using the LAN connection to
the analyzer:

Obtain the | P address of the analyzer: If you don’'t know it, agood way to find it
isasfollows:

* Inyour analyzer, using amouse or the keyboard, on the Taskbar select Sart,
Run, and enter “cmd” to open a DOS session.

Run 2| x|

- Type the name of a program, folder, document, ar
& Internet resource, and Windows will open it for you,

Qpen: | A j

0, I Zancel | Browse, ., |

12 Chapter 1

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

e Enter the DOS command “ ipconfig”, and press Enter, and the results should
resemble the window shown below. The IP Address is given under Ethernet
adapter Local Area Connection.

C:\Documents and Settings>ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection:
Media State : Media disconnected
Ethernet adapter {2DTF7S8T7T1ADCE-4A38-8D96-2DTFTS8T71ADA}:
Connection-specific DNS Suffix
IP Address.
Subnet Mask .
Default Gateway .

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : anilent com
IPAddress. : 255.255.252.0

Subnet Mask : 255.255.252.0
Default Gateway : 255,255.252.0

Sep 2. Makesuretheanalyzer Telnet socket isOn

* Press System, I/0 Config, SCPI LAN, and make sure SCPI Telnet (Port 5023) is
toggled to On.

Sep 3. Test your connection over the LAN

¢ Onyour PC using Microsoft Windows, in the Taskbar select Sart, Run, and
enter “cmd” to open a DOS session.

» Enter the DOS command “ping”, asingle space and the IP address of the
analyzer, and press Enter, and the results should resembl e the window shown
below. If the LAN connection is working, you will get statistics for Packets
Sent and Packets Received.

Chapter 1 13

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

o CHWINDOWS Y system32hcmd.exe

C:\Documents and Settings>ping 255.255.252.07
Pinging 255.255.252.07 with 32 bytes of data:

Reply from 255.255.252.07: bytes=32 time=16ms TTL=128
Reply from 255.255.252.07: bytes=32 time<{ims TTL=128

Reply from 255.255.252.07: bytes=32 time=1ms TTL=128
Reply from 255.255.252.07: bytes=32 time=1ms TTL=128

Ping statistics for 255.255.252.07:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = @ms, Maximum = 16ms, Average = Yms

C:\Documents and Settings>

Sep 4. Inthe DOSwindow, type“telnet <your analyzer IP address> 5023".
A Telnet window will open with a Welcome answerback from the analyzer Host
Name, and the command prompt will be shown as“SCPI>". You can enter any
valid SCPI command at the prompt and receive responses to queries sent.

NOTE

You can query the analyzer for al supported SCPI commands in the current mode
by sending the " SYST : HELP : HEAD?” query.

14 Chapter 1

Introduction to Programming X-Series Applications
Overview of the GPIB

Overview of the GPIB

An instrument that is part of a GPIB network is categorized as alistener, talker, or
controller, depending on its current function in the network.

Listener A listener is adevice capable of receiving data or commands
from other instruments. Any number of instrumentsin the GPIB
network can be listeners simultaneously.

Taker A talker isadevice capable of transmitting data or commandsto
other instruments. To avoid confusion, a GPIB system allows
only one device at atime to be an active talker.

Controller A controller is an instrument, typically a computer, capable of
managing the various GPIB activities. Only one device a atime
can be an active controller.

GPIB Command Satements

Command statements form the nucleus of GPIB programming. They are
understood by all instrumentsin the network. When combined with the
programming language codes, they provide all management and data
communication instructions for the system. Refer to your programming language
manual and your computer’s I/O programming manual for more information.

The seven fundamental command functions are as follows:

e Anabort function that stops al listener/talker activity on the interface bus, and
prepares all instruments to receive a new command from the controller.
Typicaly, thisis aninitialization command used to place the busin a known
starting condition (sometimes called: abort, abortio, reset, halt).

« A remote function that causes an instrument to change from local control to
remote control. In remote control, the front panel keys are disabled except for
the Local key and the line power switch (sometimes called: remote, resume).

« Alocal lockout function, that can be used with the remote function, to disable
the front panel Local key. With the Local key disabled, only the controller (or a
hard reset by the line power switch) can restore local control (sometimes
called: local lockout).

* A local function that is the complement to the remote command, causing an
instrument to return to local control with afully enabled front panel (sometimes
caled: local, resume).

* A clear function that causes all GPIB instruments, or addressed instruments, to
assume a cleared condition. The definition of clear is unique for each
instrument (sometimes called: clear, reset, control, send).

* Anoutput function that is used to send function commands and data commands
from the controller to the addressed instrument (sometimes called: output,
control, convert, image, iobuffer, transfer).

Chapter 1 15

Introduction to Programming X-Series Applications
Overview of the GPIB

* Anenter function that is the complement of the output function and is used to
transfer data from the addressed instrument to the controller (sometimes called:
enter, convert, image, iobuffer, on timeout, set timeout, transfer).

16 Chapter 1

NOTE

Introduction to Programming X-Series Applications
SCPI Measurement Commands

SCPI M easurement Commands

Specific analyzer commands for set up and initiation of measurements are
provided in the User’s and Programmer’s Reference and in the instrument Help
system under the :MEA Sure command and under the specific measurement Meas
soft key.

Once measurement parameters have been correctly configured, in general, there
are 2 methods of obtaining measurement results remotely: by using the Measure
family of commands, and by using common :CAL Culate queries of data
parameters.

M easurement Group of Commands

The Measure family of commandsis comprised of the MEA Sure command that
executes the entire measurement, and other separate commands, CONFigure,
FETCh, INITiate and READ, which each accomplish only a part of the overall
measurement. FETch and READ are queries. You can optimize your
measurements by creating programs which use MEA Sure and CONFigure a
minimum number of times, and concentrating on repeating READ, INITiate, and
FETCh commands. For more information on optimizing your measurements see
“Improving Measurement Speed” on page 41.

Thefollowing graphic illustrates the i nteractions between the Measurement family
of commands: MEA Sure, CONFigure, FETCh, INITiate and READ:

Not all measurements support all MEASure, CONFigure, FETCh, INITiate and
READ commands. See the User’s and Programmer’s Reference for specific
MEA Sure family command information.

MEASure (use CONFigure DEFault)

CONFigure NDEF READ

|— CONFigure INITiate FETCh
o Current
Start from Measurement Measurement Initialize acquired data
any instrument on, sets the on, waiting in taking of is calculated
state. default state. current state. data. and returned.

/

/

reums to SENSe & CALCulate INITiate:RESTart

ABORt

commands change the vsd26
settings from the
defaults

this point

Chapter 1 17

Introduction to Programming X-Series Applications
SCPI Measurement Commands

M easure Commands:

:MEASure:<measurement>[n]?

Thisisafast single-command way to make a measurement using the factory default
instrument settings. These are the settings and units that conform to the Mode Setup settings
(e.g. radio standard) that you have currently selected.

Stops the current measurement (if any) and sets up the instrument for the specified
measurement using the factory defaults

Initiates the data acquisition for the measurement

Blocks other SCPI communication, waiting until the measurement is complete before
returning results.

If the function does averaging, it is turned on and the number of averagesis set to 10, 25,
or 50, depending upon the current measurement.

After the datais valid it returns the scalar results, or the trace data, for the specified
measurement. The type of data returned may be defined by an [n] value that is sent with
the command.

The scalar measurement results will be returned if the optional [n] value is not included,
orissetto 1. If the[n] valueis set to avalue other than 1, the selected trace data results
will be returned. See each command for details of what types of scalar results or trace
data results are available.

ASCII isthe default format for the data output. The binary data formats should be used
for handling large blocks of data since they are smaller and faster than the ASCII1 format.
Refer to the FORMat:DATA command for more information.

If you need to change some of the measurement parameters from the factory default settings
you can set up the measurement with the CONFigure command. Use the commands in the
SENSe:<measurement> and CAL Culate:<measurement> subsystems to change the settings.
Then you can use the READ? command to initiate the measurement and query the results.

If you need to repeatedly make a given measurement with settings other than the factory
defaults, you can use the commands in the SEN Se:<measurement> and

CAL Culate:<measurement> subsystems to set up the measurement. Then use the READ?
command to initiate the measurement and query results.

Measurement settings persist if you initiate a different measurement and then returnto a
previous one. Use READ:<measurement>?if you want to use those persistent settings. If you
want to go back to the default settings, use MEA Sure:<measurement>?.

18 Chapter 1

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Configure Commands:

:CONFigure:<measurement>

This command stops the current measurement (if any) and sets up the instrument for the
specified measurement using the factory default instrument settings. It does not initiate the
taking of measurement data unless INIT:CONTinuousis ON. If you change any measurement
settings after using the CONFigure command, the READ command can be used to initiate a
measurement without changing the settings back to their defaults.

:CONFigure:NDEFault<measur ement> stops the current measurement and changes to the
specified measurement. It does not change the settings to the defaults. It does not initiate the
taking of measurement data unless INIT:CONTinuous is ON.

The CONFigure? query returns the current measurement name.

Fetch Commands:
:FETCh:<measurement>[n]?

This command puts selected data from the most recent measurement into the output buffer.
Use FETCh if you have already made a good measurement and you want to return several
types of data (different [n] values, for example, both scalars and trace data) from asingle
measurement. FETCh saves you the time of re-making the measurement. You can only
FETCh results from the measurement that is currently active, it will not change to a different
measurement. An error is reported if a measurement other than the current one, is specified.

If you need to get new measurement data, use the READ command, which is equivalent to an
INITiate followed by a FETCh.

The scalar measurement results will be returned if the optional [n] value is not included, or is
set to 1. See each command for details of what types of scalar results or trace data results are
available. The binary data formats should be used for handling large blocks of data since they
are smaller and transfer faster then the ASCII format. (FORMat:DATA)

FETCh may be used to return results other than those specified with the original READ or
MEA Sure command that you sent.

Chapter 1 19

Introduction to Programming X-Series Applications
SCPI Measurement Commands

INITiate Commands:

:INITiate:<measurement>

This command is not available for measurementsin all the instrument modes:

Initiates a trigger cycle for the specified measurement, but does not output any data. You
must then use the FETCh<meas> command to return data. If a measurement other than
the current one is specified, the instrument will switch to that measurement and then
initiate it.

For example, suppose you have previously initiated the ACP measurement, but now you
are running the channel power measurement. If you send INIT:ACP? it will change from
channel power to ACP and will initiate an ACP measurement.

Does not change any of the measurement settings. For example, if you have previously
started the ACP measurement and you send INIT:ACP?it will initiate anew ACP
measurement using the same instrument settings as the last time ACP was run.

If your selected measurement is currently active (in the idle state) it triggers the
measurement, assuming the trigger conditions are met. Then it completes one trigger
cycle. Depending upon the measurement and the number of averages, there may be
multiple data acquisitions, with multiple trigger events, for one full trigger cycle. It also
holds off additional commands on GPIB until the acquisition is complete.

READ Commands:

:READ:<measurement>[n]?

Does not preset the measurement to the factory default settings. For example, if you have
previoudly initiated the ACP measurement and you send READ:ACP? it will initiate a
new measurement using the same instrument settings.

Initiates the measurement and puts valid data into the output buffer. If a measurement
other than the current one is specified, the instrument will switch to that measurement
before it initiates the measurement and returns results.

For example, suppose you have previoudly initiated the ACP measurement, but now you
are running the channel power measurement. Then you send READ:ACP? It will change
from channel power back to ACP and, using the previous ACP settings, will initiate the
measurement and return results.

Blocks other SCPI communication, waiting until the measurement is complete before
returning the results

If the optional [n] value is not included, or is set to 1, the scalar measurement results will
be returned. If the [n] valueis set to avalue other than 1, the selected trace data results
will be returned. See each command for details of what types of scalar results or trace
dataresults are available. The binary data formats should be used when handling large
blocks of data since they are smaller and faster then the ASCII format. (FORMat:DATA)

20 Chapter 1

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Common M easurement Commands

Current Measurement Query (Remote Command Only)

This command returns the name of the measurement that is currently running.

Remote Command : CONFigure?

Example CONF?

Test current resultsagainst all limits (Remote Command Only)

Queries the status of the current measurement limit testing. It returnsaO if the
measured results pass when compared with the current limits. It returnsa 1 if the
measured results fail any limit tests.

Remote Command :CALCulate:CLIMits:FAIL?

Example CALC:CLIM:FAIL? queriesthe current
measurement to seeif it fails the defined limits.

ReturnsaO or 1: O it passes, 1 it fails.

Data Query (Remote Command Only)

Returns the designated measurement data for the currently selected measurement
and subopcode.

n = any valid subopcode for the current measurement. See the measurement
command results table for your current measurement, for information about what
dataisreturned for the subopcodes.

This command uses the data setting specified by the FORMat:BORDer and
FORMat:DATA commands and can return real or ASCII data. (See the format
command descriptions under Input/Output in the Analyzer Setup section.)

Remote Command :CALCulate:DATA [n] ?

Remote Command Notes The return trace depends on the measurement.

In CALCulate:<meas>:DATA[N], nisany vaid
subopcode for the current measurement. It returns
the same data as the FET Ch:<measurement>?
query where <measurement> is the current
measurement.

Chapter 1 21

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Calculate/Compress Trace Data Query

Returns compressed data for the currently selected measurement and sub-opcode
[n].

n = any valid sub-opcode for that measurement. See the
M EA Sure:<measurement>? command description of your specific measurement
for information on the data that can be returned.

Thedatais returned in the current Y Axis Unit of the analyzer. The command is
used with a sub-opcode <n> (default=1) to specify the trace. With trace queries, it
isbest if the analyzer is not sweeping during the query. Therefore, it is generaly
advisable to be in Single Sweep, or Update=Off.

This command is used to compress or decimate a long trace to extract and return
only the desired data. A typical example would be to acquire N frames of GSM
data and return the mean power of thefirst burst in each frame. The command can
aso be used to identify the best curvefit for the data.

Remote Command :CALCulate:DATA<n>:COMPress?
BLOCk | CFIT|MAXimum |MINimum |MEAN | DMEan |
RMS | RMSCubed | SAMPle | SDEViation | PPHase
[, <soffsets>[, <lengths> [, <roffset>[,<rli
mit>]]]]

Example To query the mean power of aset of GSM bursts:
Supply asignal that isaset of GSM bursts.

Select the |Q Waveform measurement (in 1Q
Analyzer Mode).

Set the sweep time to acquire at least one burst.

Set the triggers such that acquisition happens at a
known position relative to a burst.

Then query the mean burst levels using,
CALC:DATA2:COMP? MEAN,24e-6,526e-6
(These parameter values correspond to GSM signals,
where 526e-6 is the length of the burst in the slot and
you just want 1 burst.)

Remote Command Notes The command supports 5 parameters. Note that the
last 4 (<soffset>,<length>,<roffset>,<rlimit>) are
optional. But these optional parameters must be
entered in the specified order. For example, if you
want to specify <length>, then you must also specify
<soffset>. See details below for a definition of each
of these parameters.

This command uses the datain the format specified
by FORMat:DATA, returning either binary or ASCII
data.

22 Chapter 1

NOTE

Introduction to Programming X-Series Applications
SCPI Measurement Commands

e BLOCK or block data - returns all the data points from the region of the trace
data that you specify. For example, it could be used to return the data points of
an input signal over several timeslots, excluding the portions of the trace data
that you do not want. (Thisis X,y pairsfor trace dataand I,Q pairsfor complex
data))

e CFIT or curvefit - applies curve fitting routines to the data. <soffset> and
<length> are required to define the data that you want. <roffset> is an optional
parameter for the desired order of the curve equation. The query will return the
following values:. the x-offset (in seconds) and the curve coefficients ((order +
1) values).

MIN, MAX, MEAN, DME, RMS, RMSC, SAMP, SDEV and PPH return one data
value for each specified region (or <length>) of trace data, for as many regions as
possible until you run out of trace data (using <roffset> to specify regions). Or they
return the number of regions you specify (using <rlimit>) ignoring any data
beyond that.

e MINimum - returns the minimum data point (x,y pair) for the specified
region(s) of trace data. For 1/Q trace data, the minimum magnitude of the I/Q
pairsis returned.

* MAXimum - returns the maximum data point (x,y pair) for the specified
region(s) of trace data. For 1/Q trace data, the maximum magnitude of the I/Q
pairsis returned.

MEAN - returns a single value that is the arithmetic mean of the data point values
(in dB/ dBm) for the specified region(s) of trace data. For 1/Q trace data, the mean
of the magnitudes of the I/Q pairsis returned. See the following equations.

If the original trace dataisin dB, this function returns the arithmetic mean of those
log values, not log of the mean power which is amore useful value. The mean of
the log is the better measurement technigque when measuring CW signalsin the
presence of noise. The mean of the power, expressed in dB, is useful in power
measurements such as Channel Power. To achieve the mean of the power, use the
RMS option.

Chapter 1 23

NOTE

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Equation 1
Mean Value of Data Pointsfor Specified Region(s)

1)
MEAN = = Z Xi |
Xi € region(s) vsd274

where Xi is adata point value, and n is the number of data pointsin the
specified region(s).

Equation 2
Mean Value of |/Q Data Pairsfor Specified Region(s)

1 .
MEAN =7 > il
Xi € region(s) vsd27-2

where |Xi| is the magnitude of an I/Q pair, and n is the number of I/Q pairsin
the specified region(s).

* DMEan - returns asingle value that is the mean power (in dB/ dBm) of the data
point values for the specified region(s) of trace data. See the following
equation:

Equation 3
DM Ean Value of Data Pointsfor Specified Region(s)

1 -
DME210X|0910 ﬁ %

Xi € region(s) vsd27-3

* RMS- returnsasingle value that is the average power on a root-mean-squared
voltage scale (arithmetic rms) of the data point values for the specified
region(s) of trace data. See the following equation.

For 1/Q trace data, the rms of the magnitudes of the I/Q pairsisreturned. See the
following equation.

Thisfunctionisvery useful for 1/Q trace data. However, if the original trace datais
in dB, this function returns the rms of the log values which is not usually needed.

24 Chapter 1

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Equation 4
RM S Value of Data Points for Specified Region(s)

RMS = % Z:Xi2

X| c region (S) vsd27-4
where Xi is adata point value, and n is the number of data pointsin the
specified region(s).

Equation 5
RM S Value of 1/Q Data Pairsfor Specified Region(s)

1 o
RMS = s Z Xi Xl*
Xi € region(s) vsd27-5

where Xi isthe complex value representation of an 1/Q pair, Xi* its conjugate
complex number, and n is the number of 1/Q pairsin the specified region(s).

Once you have the rmsvalue for aregion of trace data (linear or 1/Q), you may
want to cal culate the mean power. You must convert this rms value (peak volts)
to power in dBm:

10 x log[10 x (rms value)2]

* SAMPle- returnsthefirst data value (x,y pair) for the specified region(s) of
trace data. For 1/Q trace data, the first I/Q pair is returned.

« SDEViation - returns asingle value that is the arithmetic standard deviation for
the data point values for the specified region(s) of trace data. See the following
equation.

For 1/Q trace data, the standard deviation of the magnitudes of the I/Q pairsis
returned. See the following equation.

Equation 6
Sandard Deviation of Data Point Valuesfor Specified Region(s)

1 2
SDEV = | = Z(X' -X)
Xi € region(s) vsd27-7
where Xi isadata point value, X isthe arithmetic mean of the data point values

for the specified region(s), and n is the number of data pointsin the specified
region(s).

Chapter 1 25

Introduction to Programming X-Series Applications
SCPI Measurement Commands

SDEV = [= X (il R’

Xi € region(s) vsd27-8

where |Xi| is the magnitude of an I/Q pair, X is the mean of the magnitudes for
the specified region(s), and n is the number of data pointsin the specified

region(s).

PPHase - returns the x,y pairs of both rms power (dBm) and arithmetic mean
phase (radian) for every specified region and frequency offset (Hz). The
number of pairsis defined by the specified number of regions. This parameter

can be used for 1/Q vector (n=0) in Waveform (time domain) measurement and
all parameters are specified by data point in PPHase.

The rms power of the specified region may be expressed as:
Power =10 x log [10 x (RMS 1/Q value)] + 10.

The RMS1/Q value (peak volts) is:

1
n

% 3 Xi Xi*
Xi € region vsd27-9
where Xi is the complex value representation of an I/Q pair, Xi* its conjugate

complex number, and n is the number of I/Q pairsin the specified region.

The arithmetic mean phase of the specified region may be expressed as:

D vi

Yie regi on vsd27-10

where Yi is the unwrapped phase of 1/Q pair with applying frequency
correction and n is the number of 1/Q pairsin the specified region.

The frequency correction is made by the frequency offset calculated by the
arithmetic mean of every specified region’s frequency offset. Each frequency
offset is calculated by the least square method against the unwrapped phase of

1/Q pair.

26

Chapter 1

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Sample Trace Data - Constant Envelope
(See below for explanation of variables.)

length
—P
A ‘\
soffset < >l > > vee9
roffset - ——
to If rlimit is set to 3, this
last chunk of data will
be ignored.

Sample Trace Data - Not Constant Envelope
(See below for explanation of variables.)

length If rlimit is set to 3, this
chunk of data and any
additional data will be
ignored.
-+ — — —
soffset | < > < > < >
roffset
tO vsd30

<soffset> - start offset isan optional real number. (It isin seconds for
time-domain traces, and is adimensionless index 0 to Npoints— 1, for
frequency-domain traces). It specifies the amount of data at the beginning of
the trace that will be ignored before the decimation process starts. It isthe time
or frequency change from the start of the trace to the point where you want to
start using the data. The default valueis zero.

<length> - is an optional real number. (It isin seconds for time-domain traces,
and isadimensionlessindex 0 to Npoints— 1, for frequency-domain traces). It
defines how much datawill be compressed into one value. This parameter hasa
default value equal to the current trace length.

Chapter 1 27

Introduction to Programming X-Series Applications
SCPI Measurement Commands

<roffset> - repeat offset is an optional real number. (It isin seconds for
time-domain traces, and is adimensionless index 0 to Npoints— 1, for
frequency-domain traces). It defines the beginning of the next field of trace
elements to be compressed. Thisis relative to the beginning of the previous
field. This parameter has a default value equal to the <length> variable. Note
that this parameter isused for acompletely different purpose when curve fitting
(see CFIT above).

<rlimit> - repeat limit is an optional integer. It specifies the number of data

items that you want returned. It will ignore any additional items beyond that
number. You can use the Start offset and the Repeat limit to pick out exactly
what part of the data you want to use. The default value is all the data.

Calculate peaks of trace data (Remote Command Only)

Returnsalist of all the peaks for the currently selected measurement and
sub-opcode [n]. The peaks must meet the requirements of the peak threshold and
excursion values.

n = any valid sub-opcode for the current measurement. See the
M EA Sure:<measurement> command description of your specific measurement for
information on the data that can be returned.

The command can only be used with specific sub-opcodes with measurement
results that are trace data. Both real and complex traces can be searched, but
complex traces are converted to magnitude in dBm. In many measurements the
sub-opcode n=0, is the raw trace data which cannot be searched for peaks. And
Sub-opcode n=1, is often cal culated results values which also cannot be searched
for peaks.

This command uses the data setting specified by the FORMat:BORDer and
FORMat:DATA commands and can return real or ASCI| data. If the format is set
to INT,32, it returns REAL,32 data.

The command has four types of parameters:

* Threshold (in dBm)

e Excursion (indB)

o Sorting order (amplitude, frequency, time)

» Optiona in some measurements: Display line use (all, > display line, < display

line)

Remote Command :CALCulate:DATA[1] |2|3]4|5|6:PEAKS?
<reals, <reals[,AMPLitude | FREQuency | TI
ME [, ALL|GTDLine|LTDLine]]

28 Chapter 1

Remote Command

Example

Remote Command Notes

Introduction to Programming X-Series Applications

SCPI Measurement Commands

For Swept SA measurement:

:CALCulate:DATA[1] [2|3|4|5|6:PEAKS?
<threshold>,<excursion>[,AMPLitude|FR
EQuency | TIME [, ALL|GIDLine | LTDLine]]

For most other measurements:

:CALCulate:DATA[1] [2|3|4|5|6:PEAKS?
<threshold>,<excursion>[,AMPLitude|FR
EQuency | TIME]

Example for Swept SA measurement in Spectrum
Analyzer Mode:

CALC:DATA4:PEAK?—40,10,FREQ,GTDL This
will identify the peaks of trace 4 that are above —40
dBm, with excursions of at least 10 dB. The peaks
arereturned in order of increasing frequency,
starting with the lowest frequency. Only the peaks
that are above the display line are returned.

Query Results 1:

With FORMat:DATA REAL,32 selected, it returnsa
list of floating-point numbers. Thefirst value in the
list isthe number of peak pointsthat are in the
following list. A peak point consists of two values: a
peak amplitude followed by its corresponding
frequency (or time).

If no peaks are found the peak list will consist of
only the number of peaks, (0).

<n> - isthe trace that will be used

<threshold> - isthe level below which trace data
peaks are ignored. Note that the threshold value is
required and is aways used as a peak criterion. To
effectively disable the threshold criterion for this
command, provide a substantially low threshold
value such as—200 dBm. Also note that the
threshold value used in this command is
independent of and has no effect on the threshold
value stored under the Peak Criteria menu.

<excursion> - isthe minimum amplitude variation
(riseand fall) required for asignal to be identified as
peak. Note that the excursion valueisrequired and is
always used as a peak criterion. To effectively
disable the excursion criterion for this command,
provide the minimum value of 0.0 dB. Also note that
the excursion value used in this command is
independent of and has no effect on the excursion
value stored under the Peak Criteria menu.

Chapter 1

29

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Remote Command Notes (Cont.) ~ Sorting order:

AMPLitude - lists the peaks in order of descending
amplitude, with the highest peak first (default if
optional parameter not sent)

FREQuency - lists the peaksin order of occurrence,
left to right across the x-axis.

TIME - lists the peaks in order of occurrence, left to
right across the x-axis.

Peaksvs. Display Line:

ALL - listsall of the peaksfound (default if optional
parameter not sent).

GTDLine (greater than display line) - lists all of the
peaks found above the display line.

LTDLine (lessthan display line) - lists al of the
peaks found below the display line.

Dependencies/Couplings Values must be provided for threshold and
excursion. The sorting and display line parameters
are optional (defaults are AMPLitude and ALL).

Note that thereis always a Y-axis value for the
display line, regardiess of whether the display line
stateis on or off. It isthe current Y-axis value of the
display line which is used by this command to
determine whether a peak should be reported.

Format Data: Numeric Data (Remote Command Only)

This command specifies the format of the trace data input and output. It specifies
the formats used for trace data during data transfer across any remote port. It
affects only the data format for setting and querying trace data for the
:TRACeH[:DATA], TRACe[:DATA]?, :CALCulate:DATA[N]? and
FETCh:SANalyzer[n]? commands and queries.

Remote Command :FORMat [:TRACe] [:DATA] ASCii|INTeger, 32 |REAL, 32
|REAL, 64

:FORMat [: TRACe] [:DATA] ?

Dependencies/ Sending a data format spec with an invalid number (for example,
Couplings INT,48) generates no error. The analyzer simply uses the default (8
for ASCii, 32 for INTeger, 32 for REAL).

Sending data to the analyzer which does not conform to the current
FORMat specified, resultsin an error.

30 Chapter 1

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Remote Command The query responseis:

Notes ASCii: ASC,8
REAL,32: REAL,32
REAL,64: REAL,64
INTeger,32: INT,32
When the numeric dataformat is REAL or ASCii, datais output in
the current Y Axis unit. When the dataformat is INTeger, datais
output in units of mdBm (0.001 dBm).
Note that the INT,32 format is only applicable to the command,
TRACe:DATA. This preserves backwards compatibility for the
Swept SA measurement. For all other commands/queries which
honor FORMat:DATA, if INT,32 is sent the analyzer will behave as
though it were set to REAL,32.
The INT,32 format returns binary 32-bit integer valuesin internal
units (m dBm), in a definite length block.

Preset ASCii

The specs for each output type follow:

ASCii - Amplitude values are in ASCII, in the current Y Axis Unit, one ASCII
character per digit, values separated by commas, each value in the form:

SXYYYYYEsZZ

Where:

S=sign(+or-)

X = onedigit to left of decimal point
Y =5digitsto right of decimal point
E = E, exponent header

s=sign of exponent (+ or -)

ZZ =two digit exponent

REAL,32 - Binary 32-bit real valuesin the current Y AxisUnit, in adefinite length
block.

REAL,64 - Binary 64-bit real valuesinthe current Y AxisUnit, in adefinite length
block.

Chapter 1 31

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Format Data: Byte Order (Remote Command Only)

This command selects the binary data byte order for data transfer and other
gueries. It controls whether binary datais transferred in normal or swapped mode.
This command affects only the byte order for setting and querying trace data for
the :TRACe[:DATA], TRACe[:DATA]?, :CALCulate:DATA[Nn]? and
FETCh:SANalyzer[n]? commands and queries.

By definition any command that saysit uses FORMat:DATA uses any format
supported by FORMat:DATA.

The NORMa order is a byte sequence that begins with the most significant byte
(MSB) first, and ends with the least significant byte (LSB) last in the sequence:
1)2|3|4. SWAPped order is when the byte sequence begins with the LSB first, and
ends with the MSB last in the sequence: 4|3|2|1.

Remote Command :FORMat : BORDer NORMal | SWAPped

: FORMat : BORDexr?

Preset NORMal

32 Chapter 1

Programming Fundamentals

This chapter provides overall information on programming X-Series analyzers
using SCPI and C languages. Sections include:

e “SCPI Language Basics’ on page 34
« “Improving Measurement Speed” on page 41
* “Programming in C Using the VTL” on page 48

e “For More Information” on page 56

33

NOTE

Programming Fundamentals
SCPI Language Basics

SCPI Language Basics

This section is not intended to teach you everything about the SCPI (Standard
Commands for Programmable Instruments) programming language. The SCPI
Consortium or |EEE can provide that level of detailed information. For more
information refer to the websites for the IEEE Standard 488.1 (IEEE Standard
Digital Interface for Programmable I nstrumentation).

Topics covered in this section include:

e “Creating Valid Commands’ on page 35

e “Command Keywords and Syntax” on page 34
e “Specia Charactersin Commands’ on page 35
e “Parametersin Commands’ on page 36

» “Putting Multiple Commands on the Same Line” on page 39

Command Keywords and Syntax

A typical command is made up of keywords set off by colons. The keywords are
followed by parameters that can be followed by optional units.

Example: SENSe : FREQuency: STARt 1.5 MHZ

The instrument does not distinguish between upper and lower case letters. In the
documentation, upper case letters indicate the short form of the keyword. The
lower case |etters, indicate the long form of the keyword. Either form may be used
in the command.

Example: Sens.Freg:Star 1.5 mhz
is the same as SENSE : FREQ: start 1.5 MHz
The command SENS : FREQU : STAR would not be valid because FREQU is neither

the short, nor the long form of the command. Only the short and long forms of the
keywords are allowed in valid commands.

34 Chapter 2

Programming Fundamentals
SCPI Language Basics

Creating Valid Commands

Commands are not case sensitive and there are often many different ways of
writing a particular command. These are examples of valid commands for agiven
command syntax:

Command Syntax Sample Valid Commands

[SENSe:]BANDwidth[:RESolution] <freg> Thefollowingsamplecommandsareall identical. They
will all cause the same result.

* Sense:Band:Res 1700

e BANDWIDTH:RESOLUTION 1.7e3
* sens:band 1.7KHZ

* SENS:band 1.7E3Hz

* band 1.7kHz

e bandwidth:RES 1.7e3Hz

MEASure:SPECtrum[n]? * MEAS:SPEC?
* Meas:spec?
* meas:spec3?

The number 3 in the last meas example causesit to
return different results then the commands aboveit. See
the command description for more information.

[:SENSe] :DETector [: FUNCtion] e DET:FUNC neg

NEGative|POSitive|SAMPle
¢ Detector:Func Pos

INITiate:CONTinuous ON|OFF|1]|0 The sample commands below are identical.

e INIT:CONT ON

e init:continuous 1

Special Charactersin Commands

Special Meaning Example
Character

| A vertical stroke between parameters Command: TRIGger:SOURce
indicates alternative choices. The effect | EXTernal | INTernal | LINE
of the command is different depending

onwhich parameter is sdlected, The choices are external, internal, and line.

EX: TRIG:SOURCE INT

is one possible command choice.

Chapter 2 35

Programming Fundamentals
SCPI Language Basics

Special M eaning Example
Character
A vertical stroke between keywords Command:
indicatesidentical effects exist for both SENSe: BANDwidth |BWIDth:OFFSet
;%vg?:sé;rhr; iomvrvr:)arrgjd gunTth::é?e Two identical commands are: Ex1:
these kevwor dsigj d aI a tir>1/ne SENSE : BWIDTH : OFFSET Ex2:
YW ' SENSE : BAND : OFFSET
[1 keywordsin square brackets are optional | Command:
when composing the command. These [SENSe:]BANDwidth[:RESolution] : AUTO
:][rlpr)]lleda:(:{)\r/vnﬁrtizwnl be executed even The following commands are all valid and have
Y ' identical effects:
Ex1: bandwidth:auto
Ex2: band:resolution:auto
Ex3: sense:bandwidth:auto
<> Angle brackets around aword, or words, | Command: SENS: FREQ <freg>
!ndlcates they are not to be used literally In this command example the word <freg> should
in the command. They represent the be reolaced by an actual frequenc
needed item. P ¥ € Y-
EX: SENS:FREQ 9.7MHz.
{} Parametersin braces can optionally be Command: MEASure:BW <freg>{, level}

used in the command either not at all,
once, or several times.

A valid command is:
meas:BW 6 MHz, 3dB, 60dB

Parametersin Commands

There are four basic types of parameters. booleans, keywords, variables and

arbitrary block program data.

OFF|ON|0]1
(Boolean)

Thisisatwo state boolean-type parameter. The numeric value 0

is equivalent to OFF. Any numeric value other than O is
equivalent to ON. The numeric values of 0 or 1 are commonly
used in the command instead of OFF or ON. Queries of the
parameter always return anumeric value of O or 1.

keyword

The keywords that are allowed for a particular command are

defined in the command syntax description.

Units

Numeric variables may include units. The valid unitsfor a

command depend on the variable type being used. See the

following variable descriptions. The indicated default units will
be used if no units are sent. Units can follow the numerical value
with, or without, a space.

Variable

A variable can be entered in exponentia format aswell as

standard numeric format. The appropriate range of the variable

36

Chapter2

Programming Fundamentals
SCPI Language Basics

and its optional units are defined in the command description.

The following keywords may also be used in commands, but not
all commands allow keyword variables.

* DEFault - resets the parameter to its default value.
* UP - increments the parameter.
 DOWN - decrements the parameter.

e MINimum - sets the parameter to the smallest possible
value.

e MAXimum - sets the parameter to the largest possible value.

The numeric value for the function’s MINimum, MAXimum, or
DEFault can be queried by adding the keyword to the command
inits query form. The keyword must be entered following the
guestion mark.

Example query: SENSE : FREQ : CENTER? MAX

Variable Parameters

<integer>
<rea>

<freq>
<bandwidth>

<time>
<seconds>

<voltage>

<current>

<power>

<ampl>

<rel_power>
<rel_ampl>

<percent>

is aninteger value with no units.

Is afloating point number with no units.

Is apositive rational number followed by optional units. The
default unit is Hertz. Acceptable unitsinclude: Hz, kHz, MHz,
GHz.

Isarational number followed by optional units. The default
units are seconds. Acceptable unitsinclude: ks, s, ms, us, ns.

Isarational number followed by optional units. The default
units are Volts. Acceptable unitsinclude: V, mV, uV, nv

Isarationa number followed by optiona units. The default
units are Amperes. Acceptable unitsinclude: A, mA, uA, nA.

Isarational number followed by optiona units. The default
units are W. Acceptable units include: kW, W, mW, uW, nWw,
pW.

Isarationa number followed by optional units. The default
units are dBm. Acceptable unitsinclude: dBm, dBmV, dBuV.

Is apositive rational number followed by optional units. The
default units are dB. Acceptable unitsinclude: dB.

Isarational number between 0 and 100. You can either use no
units or use PCT.

Chapter 2

37

Programming Fundamentals
SCPI Language Basics

<angle>

<degrees> Isarational number followed by optional units. The default
units are degrees. Acceptable unitsinclude: DEG RAD.

<string> Is aseries of aphanumeric characters.

<hit_pattern> Specifies a series of bits rather than a numeric value. The bit
seriesis the binary representation of a numeric value. There are
No units.

Bit patterns are most often specified as hexadecimal numbers,
though octal, binary or decimal numbers may also be used. In
the SCPI language these numbers are specified as:

» Hexadecimal, #Hdddd or #hdddd where ‘d’ represents a
hexadecimal digit 0to 9 and ‘a to ‘f’. So #h14 can be used
instead of the decimal number 20.

e Octal, #0dddddd or #odddddd where ‘d" represents an octal
digit 0 to 7. So #024 can be used instead of the decimal
number 20.

* Binary, #Bdddddddddddddddd or #bdddddddddddddddd
where 'd’ representsa 1 or 0. So #b10100 can be used
instead of the decimal number 20.

Block Program Data

Some parameters consist of ablock of data. There are a few standard types of
block data. Arbitrary blocks of program data can also be used.

<trace> Isan array of rational numbers corresponding to displayed trace
data. See FORMat:DATA for information about available data
formats.

A SCPI command often refers to ablock of current trace data
with avariable name such as: Tracel, Trace2, or trace3,
depending on which trace is being accessed.

38 Chapter 2

Programming Fundamentals
SCPI Language Basics

<arbitrary block

data> Consists of ablock of data bytes. The first information sent in
the block isan ASCII header beginning with #. The block is
terminated with a semi-colon. The header can be used to
determine how many bytes are in the data block. There are no
units. (You will not get block dataif your datatype is ASCII,
using FORMat : DATA ASCII command. Your datawill be
comma separated ASCI| values.

Block data example: suppose the header is #512320.

* Thefirst digit in the header (5) tells you how many
additional digits/bytesthere arein the header.

* The 12320 means 12 thousand, 3 hundred, 20 data bytes
follow the header.

» Dividethis number of bytes by your current data format
(bytes/data point), either 8 (for real,64), or 4 (for real,32).
For this example, if you're using real64 then there are 1540
points in the block.

Putting Multiple Commands on the Same Line

Multiple commands can be written on the same line, reducing your code space
requirement. To do this:

» Commands must be separated with a semicolon (;).

« If the commands are in different subsystems, the key word for the new
subsystem must be preceded by a colon (;).

* If the commands are in the same subsystem, the full hierarchy of the command
key words need not be included. The second command can start at the same key
word level as the command that was just executed.

SCPI Termination and Separator Syntax

All binary trace and response data is terminated with <NL><END>, as defined in
Section 8.5 of IEEE Standard 488.2-1992, |EEE Sandard Codes, Formats,
Protocols and Common Commands for Use with ANSI/IEEE Sd 488.1-1987. New
York, NY, 1992. (Although one intent of SCPI isto be interface independent,
<END> isonly defined for |EEE 488 operation.)

Chapter 2 39

Programming Fundamentals
SCPI Language Basics

The following are some examples of good and bad commands. The examples are
created from atheoretical instrument with the simple set of commands indicated

below:

[:SENSe]
: POWer
[:RF]

:ATTenuation 40dB

:TRIGger
[: SEQuence]
:EXTernal [1]
:SLOPe

POSitive

[:SENSe]
:FREQuency
: STARL
:POWer
[:RF]
:MIXer
: RANGe

[:UPPer]

Bad Command

Good Command

PWR:ATT 40dB

POW:ATT 40dB

The short form of POWER iS POW, not PWR.

FREQ:STAR 30MHz;MIX:RANG -20dBm

FREQ:STAR 30MHz; POW:MIX:RANG -20dBm

TheMIX:RANG commandisinthe same : SENSE subsystem as FREQ, but executing the FREQ command puts
you back at the SENSE level. You must specify POW to get to the MIX : RANG command.

FREQ:STAR 30MHz; POW:MIX RANG -20dBm

FREQ:STAR 30MHz; POW:MIX:RANG -20dBm

MIX and RANG require acolon to separate them.

:POW:ATT 40dB; TRIG:FREQ:STAR 2.3GHz

:POW:ATT 40dB; :FREQ:STAR 2.3GHz

:FREQ: STAR isinthe : SENSE subsystem, not the : TRIGGER subsystem.

:POW:ATT? : FREQ:STAR?

:POW:ATT?; : FREQ: STAR?

: POW and FREQ are within the same : SENSE subsystem, but they are two separate commands, so they should

be separated with a semicolon, not a colon.

:POW:ATT -5dB; :FREQ:STAR 10MHz

:POW:ATT 5dB; :FREQ:STAR 10MHz

Attenuation cannot be a negative value.

40

Chapter2

Programming Fundamentals
Improving Measurement Speed

I mproving M easurement Speed

There are anumber of thingsyou can do in your programs to make them run faster:
“Turn off the display updates’ on page 41
“Use binary data format instead of ASCII” on page 41
“Minimize the number of GPIB transactions’ on page 42
“Consider using USB or LAN instead of GPIB” on page 43
“Minimize DUT/instrument setup changes’ on page 43
“Avoid automatic attenuator setting” on page 43
“Avoid using RFBurst trigger for single burst signals’ on page 44

“N9071A: Optimize your GSM output RF spectrum switching measurement”
on page 45

“Making power measurements on multiple bursts or slots? Use
CALCulate:DATA<n>.COMPress?’ on page 45

Turn off the display updates

:DISPlay:ENABle OFF turnsoff thedisplay. That is, the datamay till be
visible, but it will no longer be updated. Updating the display slows down the
measurement. For remote testing, since the computer is processing the data rather

than a person, there is no need to display the data on the analyzer screen.

Use binary data format instead of ASCI |

The ASCII dataformat is the instrument default since it is easier for people to
understand and is required by SCPI for *RST. However, data input/output is faster
using the binary formats.

:FORMat : DATA REAL, 64 selectsthe 64-bit binary dataformat for al your
numerical data queries. You may need to swap the byte order if you are using a PC
rather than UNIX. NORMal is the default byte order. Use : FORMat : BORDer
SWAP to change the byte order so that the least significant byte is sent first.
(Real,32 which is smaller and somewhat faster, should only be used if you don’t
need full resolution for your data. Some frequency data may require full 64 bit
resolution.)

When using the binary format, datais sent in ablock of bytes with an Ascii header.
A data query would return the block of datain the following format: #DNNN<nnn
binary data bytes>

Chapter 2 41

Programming Fundamentals
Improving Measurement Speed

To parse the data:

Read two characters (#D), where D tells you how many N characters follow the
D character.

Read D characters, the resulting integer specifies the number of data bytes sent.
Read the bytesinto areal array.

For example, suppose the header is #512320.

Thefirst character/digit in the header (5) tells you how many additional digits
there are in the header.

The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.
Divide this number of bytes by your current data format (bytes/data point), 8
for real,64. For this example, there are 1540 data pointsin the block of data.

Minimizethe number of GPIB transactions

When you are using the GPIB for control of your instrument, each transaction
requires driver overhead and bus handshaking, so minimizing these transactions
reduces the time used.

You can reduce bus transactions by sending multiple commands per
transaction. See the information on “Putting Multiple Commands on the Same
Line” in the SCPI Language Basics section.

If you are making the same measurement multiple times with small changesin
the measurement setup, use the READ command. It is faster then using
INITiate and FETCh.

If you are changing the frequency and making a measurement repeatedly, you
can reduce transactions by sending the optional frequency parameter with your
READ command.

(for example, READ:<meas>? { <freq>}) These optional parameters are not
available in some personality modes such as Spectrum Analysis or Phase
Noise.

The CONFigure/MEA Sure/READ commands for measurements in the option
Modes allow you to send center frequency setup information along with the
command. (for example, MEAS : PVT? 935.2MHz) This setsthe power vs. time
measurement to it’s defaults, then changes the center frequency to 935.2 MHz,
initiates a measurement, waits until it is complete and returns the measurement
data.

If you are doing bottom/middle/top measurements on base stations, you can
reduce transactions by making atime slot active at each of the B,M, T
frequencies. Then issue three measurements at once in the programming code
and retrieve three data sets with just one GPIB transaction pair (write, read).

For example, send READ:PFER? <Freq_bottom>;PFER?
<Freq_middle>;PFER? <Freq_top> This single transaction initiates three
different phase and frequency error measurements at each of the three different
frequencies provided and returns the data. Then you read the three sets of data.

42

Chapter2

Programming Fundamentals
Improving Measurement Speed

Consider using USB or LAN instead of GPIB

USB and LAN allow faster data input and output. Thisis especialy important if
you are moving large blocks of data. You will not get thisimproved throughput
using LAN if thereis excessive LAN traffic (that is, your test instrument is
connected to avery busy enterprise LAN). You may want to use a private LAN
that is only for your test system.

Minimize DUT/instrument setup changes

» Someinstrument setup parameters are common to multiple measurements. You
should look at your measurement process with an eye toward minimizing setup
changes. If your test process involves nested |oops, make sure that the
inner-most loop is the fastest. Also, check if the loops could be nested in a
different order to reduce the number of parameter changes as you step through
the test.

« Areyou are using the measurements under the Meas key? Remember that if
you have already set your Meas Setup parameters for a measurement, and you
want to make another one of these measurements later, use READ:<meas>?.
The MEA Sure:<meas>?. command resets al the settings to the defaults, while
READ changes back to that measurement without changing the setup
parameters from the previous use.

* Areyou are using the Measurements under the Meas key? Remember that
Mode Setup parameters remain constant across al the measurementsin that
mode (e.g. center/channel frequency, amplitude, radio standard, input selection,
trigger setup). You don’t have to re-initialize them each time you change to a
different measurement.

Avoid unnecessary use of *RST

Remember that while * RST does not change the current Mode, it presets all the
measurements and settings to their factory defaults. This forces you to reset your
analyzer’'s measurement settings even if they use similar mode setup or
measurement settings. See Minimize DUT/instrument setup changes below. (Also
note that * RST may put the instrument in single measurement/sweep for some
modes.)

Avoid automatic attenuator setting

Many of the one-button measurements use an internal process for automatically
setting the value of the attenuator. It requires measuring an initial burst to identify
the proper attenuator setting before the next burst can be measured properly. If you
know the amount of attenuation or the signal level needed for your measurement,
just set it.

Note that spurious types of measurements must be done with the attenuator set to
automatic (for measurements like: output RF spectrum, transmit spurs, adjacent
channel power, spectrum emission mask). These types of measurements start by

Chapter 2 43

NOTE

Programming Fundamentals
Improving Measurement Speed

tuning to the signal, then they tune away from it and must be able to reset the
attenuation value as needed.

Avoid using RFBurst trigger for single burst signals

RFBurst triggering works best when measuring signals with repetitive bursts. For a
non-repetitive or single burst signals, use the IF (video) trigger or external trigger,
depending on what you have available.

RFBurst triggering depends on its establishment of avalid triggering reference
level, based on previous bursts. If you only have asingle burst, the peak detection
nature of thistriggering function, may result in the trigger being done at the wrong
level/point generating incorrect data, or it may not trigger at all.

Areyou making a single bur st measurement?

To get consistent triggering and good data for this type of measurement
application, you need to synchronize the triggering of the DUT with the analyzer.
You should use the analyzer’s internal status system for this.

Thefirst step in this processis to initialize the status register mask to look for the
“waiting for trigger” condition (bit 5). Use :STATus:0PERation:ENABle 32

Then, in the measurement loop:

1. :STATus:OPERation:EVENt? Thisquery of the operation event register is
to clear the current register contents.

2. :READ:PVT? initiates ameasurement (in this example, for GSM power versus
time) using the previous setup. The measurement will then be waiting for the
trigger.

Make sure the attenuation is set manually. Do NOT use automatic attenuation
asthis requires an additional burst to determine the proper attenuation level
before the measurement can be made.

3. Create asmall loop that will serial poll the instrument for a status byte value of
binary 128. Then wait 1 msec (100 msif the display is left on/enabled) before
checking again, to keep the bus traffic down. These two commands are
repeated until the condition is set, so we know that the trigger is armed and
ready.

4. Trigger your DUT to send the burst.
5. Return the measurement data to your computer.

This process cannot be done by using with the current VX1 plug-n-play driver
implementation. You will need to use the above SCPI commands.

44 Chapter2

Programming Fundamentals
Improving Measurement Speed

N9071A: Optimize your GSM output RF spectrum switching
measur ement

For ORFS (switching), setting the break frequency to zero (0) putsthe analyzer in
ameasurement setup where it can use a direct time measurement algorithm,
instead of an FFT-based algorithm. This non-FFT approach is faster. (However,
remember that your break frequency for ORFS (modulation) measurements must
be >400 kHz for valid measurements, so you will need to change the break
frequency if you are making both types of measurements.)

Making power measurements on multiple burstsor slots? Use
CALCulateDATA<n>:COM Press?

The CALC:DATA:COMP? query isthe fastest way to measure power data for
multiple bursts/slots. There are two reasons for this; 1. it can be used to measure
data across multiple, consecutive dlots/frames with just one measurement, instead
of a separate measurement on each slot, and 2. it can pre-process and/or decimate
the data so that you only return the information that you need which minimizes
datatransfer to the computer.

For example: you want to do a power measurement for a GSM base station where
you generate a repeating frame with 8 different power levels. You can gather al
the datawith a single CALC: DATA : COMP? acquisition, using the waveform
measurement.

With CALC:DATA2 : COMP? MEAN, 9,197,1730 you can measure the mean
power in those bursts. This single command will measure the data across all 8
frames, locate thefirst slot/burst in each of the frames, cal culate the mean power of
those bursts, then return the resulting 8 values.

Example:
To set up a GSM Waveform measurement:

e :CONF:WAV? turns on the waveform measurement

e :WAV:BAND 300khz Setsaresolution bandwidth of 300 kHz

e :WAV:SWE:TIME 5ms Setsasweep time of 5 milliseconds

e :WAV:BAND:TYPE FLAT selectstheflat filter type

* :WAV:DEC 4;DEC:STAT ON selects adecimation of 4 and turns on
decimation. This reduces the amount of data that needs to be sent since the
instrument hardware decimates (throws some away).

e :INIT toinitiate a measurement and acquire the data

e CALC:DATA2:COMP? MEAN, 25us,526us,579.6us, 8 toreturnthedesired
data

There are two versions of this command depending on your firmware revision.
Earlier revisions require the optional variables be entered in terms of their position
in the trace data array. Current instruments allow the variables to be entered in
terms of time.

For early firmware revisions you need to know the sample interval. In the

Chapter 2 45

Programming Fundamentals
Improving Measurement Speed

waveform measurement it is equal to the aperture value.

Query :WAVeform:APERture?to find the sampleinterval. (Note: the WAV:APER?
command aways takes decimation into account.) The sample interval (aperture
value) is dependent on the settings for resolution bandwidth, filter type, and
decimation. See the following table to see how these value rel ate.

The parameters for this GSM example are:
MEAN, 9,197,1730 (or with later firmware: MEAN, 25us, 526us, 579.6us, 8)

 MEAN calculates the mean of the measurement points indicated

* 9ishow many points you want to discard before you look at the data. This
allows you to skip over any “unsettled” values at the beginning of the burst.
You can calculate this start offset by (25us/samplel nterval)l

» 197 isthelength of the datayou want to use. This would be the portion of the
burst that you want to find the mean power over. You can calculate this length
by (526us/samplelnterval)

» 1730 is how much data you have before you repeat the process. For this
example it’s the time between the start offset point on the burst in the first slot
(first frame) to the same spot on the burst in the first slot (second frame). You
can calculate this by (576.9us* N/samplelnterval) where N is the number of
dataitemsthat you want. In this case it is the number of slotsin the frame,

N=8.)

Table 2-1 GSM Parametersfor 1 Slot/Frame Measurement Requirements
Resolution Filter Type | Decimation Aperture Sart Length Repeat
Bandwidth
500 or 300 kHz | Flat or dorl dependent on | 24 psec 526 psec 576.9 usec

Gaussian settings
500 kHz Gaussian 1 0.2 usec 124 2630 2884.6
500 kHz Gaussian 4 0.8 usec 31 657 721.15
500 kHz Flat 1 0.4 usec 61 1315 1442.3
500 kHz Flat 4 1.6 usec 15 329 360.575
300 kHz Gaussian 1 0.2667 psec 90 1972 2163.1
300 kHz Gaussian 4 1.07 usec 22 492 539.16
300 kHz Flat 1 0.6667 LLsec 36 789 865.31
300 kHz Flat 4 2.667 usec 9 197 216.33

46 Chapter2

Programming Fundamentals
Improving Measurement Speed

For MoreInformation

For more information on optimizing measurement speed using X-Series analyzers
see Agilent Application Note 1583:

http://cp.literature.agilent.com/litweb/pdf/5989-4947EN. pdf

Chapter 2 47

http://cp.literature.agilent.com/litweb/pdf/5989-4947EN.pdf

Programming Fundamentals
Programming in C Using the VTL

Programming in C UsingtheVTL

The programming examples that are provided are written using the C
programming language and the Agilent VTL (VISA transition library). This
section includes some basic information about programming in the C language.
Note that some of thisinformation may not be relevant to your particular
application. (For example, if you are not using VXI instruments, the V XI
references will not be relevant).

Refer to your C programming language documentation for more details. (This
information is taken from the manual “VISA Transition Library”, part number
E2090-90026.) The following topics are included:

“Typical Example Program Contents’” on page 48
“Linking to VTL Libraries’ on page 49

“Compiling and Linking aVTL Program” on page 49
“Example Program” on page 51

“Including the VISA Declarations File” on page 51
“Opening a Session” on page 52

“Device Sessions’ on page 52

“Addressing a Session” on page 54

“Closing a Session” on page 55

Typical Example Program Contents

Thefollowing isasummary of the VTL function calls used in the example
programs.

visa.h Thisfileisincluded at the beginning of the fileto provide the
function prototypes and constants defined by VTL.

ViSession TheviSessionisaVTL datatype. Each object that will
establish a communication channel must be defined as
ViSession.

viOpenDefaultRM You must first open asession with the default resource
manager with the viOopenDefaul tRM function. Thisfunction
will initialize the default resource manager and return a pointer
to that resource manager session.

viOpen This function establishes a communication channel with the
device specified. A session identifier that can be used with other
VTL functionsisreturned. This call must be made for each
device you will be using.

viPrintf

viScanf These arethe VTL formatted I/O functions that are patterned
after those used in the C programming language. The
viPrintf call sendsthe |IEEE 488.2 *RST command to the
instrument and putsit in aknown state. TheviPrintf call is

48 Chapter2

Programming Fundamentals
Programming in C Using the VTL

used again to query for the device identification (* IDN?). The
viScanf call isthen used to read the results.

viClose This function must be used to close each session. When you
close adevice session, all data structures that had been all ocated
for the session will be de-allocated. When you close the default
manager session, all sessions opened using the default manager
session will be closed.

LinkingtoVTL Libraries
Your application must link to one of the VTL import libraries:
32-bit Version:
C:\VXIPNP\WIN95\LIB\MSC\VISA32.LIB for Microsoft compilers
C:\VXIPNP\WIN95\LIB\BC\VISA32.LIB for Borland compilers
16-bit Version:
C:\VXIPNP\WIN\LIB\MSC\VISA.LIB for Microsoft compilers
C:\VXIPNP\WIN\LIB\BC\VISA.LIB for Borland compilers

See the following section, “Compiling and Linking aVTL Program” for
information on how to usethe VTL run-time libraries.

Compiling and Linkinga VTL Program

32-bit Applications

The following is a summary of important compiler-specific considerations for
several C/C++ compiler products when devel oping WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:
* Sedlect Project | Update All Dependencies from the menu.

* Select Project | Settings fromthe menu. Click onthe c/C++ button.
Select Code Generation fromtheUse Run-Time Librarieslist
box. VTL requires these definitions for WIN32. Click OK to close the dialog
boxes.

* Select Project | Settings fromthe menu. Click onthe Link button
andadd visa32.libtotheObject / Library Modules list box.
Optionally, you may add the library directly to your project file. Click OK to
close the dialog boxes.

* You may wish to add the include file and library file search paths. They are set
by doing the following:

1. Select Tools | Options from the menu.

2. Click Directories to set theinclude file path.

Chapter 2 49

Prog

ramming Fundamentals

Programming in C Using the VTL

3
4
5
6

. Select Include Files fromtheShow Directories For list box.
. Click Add and typeinthefollowing: C: \VXIPNP\WIN95\INCLUDE
. Select Library Files fromtheShow Directories For list box.

. Click Add and typein thefollowing: C: \VXIPNP\WIN95\LIB\MSC

For Borland C++ version 4.0 compilers:

* You may wish to add the include file and library file search paths. They are set
under the Options | Project menu selection. Double-click on

D

c
c

16-b

irectories from the Topics list box and add the following:

: \VXIPNP\WIN95\INCLUDE
: \VXIPNP\WIN95\LIB\BC

it Applications

Thefollowing is asummary of important compiler-specific considerations for the
Windows compiler.

For Microsoft Visual C++ version 1.5:

* To set the memory model, do the following:

1
2.
3.
4,

Select Options | Project.
Click compiler, then select Memory Model fromthe Category list.
Click theModel list arrow to display the model options, and select Large.

Click OK to close the Compiler dialog box.

* You may wish to add the include file and library file search paths. They are set
under the Options | Directories menu selection:

c
c

: \VXIPNP\WIN\INCLUDE
: \VXIPNP\WIN\LIB\MSC

Otherwise, the library and include files should be explicitly specified in the
project file.

50

Chapter2

Programming Fundamentals
Programming in C Using the VTL

Example Program

This example program queries a GPIB devicefor an identification string and prints
the results. Note that you must change the address.

/*idn.c - program filename */

#include "visa.h"
#include <stdio.h>

void main ()

{

/*Open session to GPIB device at address 18 */

ViOpenDefaultRM (&defaultRM) ;

ViOpen (defaultRM, GPIBO::18::INSTR", VI NULL,
VI _NULL, &vi);

/*Initialize device */
viPrintf (vi, "*RST\n");

/*Send an *IDN? string to the device */
printf (vi, "*IDN?\n");

/*Read results */
viScanf (vi, "%t", &buf);

/*Print results */
printf ("Instrument identification string: %s\n", buf);

/* Close sessions */
viClose (vi);
viClose (defaultRM) ;

Including the VI SA Declarations File

For C and C++ programs, you must include the visa.h header file at the
beginning of every file that contains VTL function calls:

#include “visa.h”

This header file contains the VISA function prototypes and the definitions for all
VISA constants and error codes. The visa.h header fileincludes the
visatype.h header file.

Thevisatype.h header file defines most of the VISA types. The VISA typesare
used throughout VTL to specify data types used in the functions. For example, the
viOpenDefaultRM function requires a pointer to a parameter of type
ViSession. If youfind ViSession inthe visatype . h header file, you will
find that visession iseventually typed as an unsigned long.

Chapter 2 51

NOTE

Programming Fundamentals
Programming in C Using the VTL

Opening a Session

A session isachannel of communication. Sessions must first be opened on the
default resource manager, and then for each device you will be using. The
following isasummary of sessions that can be opened:

* A resource manager session isused toinitializethe VISA system. Itisa
parent session that knows about all the opened sessions. A resource manager
session must be opened before any other session can be opened.

» A devicesession isused to communicate with a device on an interface. A
device session must be opened for each device you will be using. When you use
adevice session you can communicate without worrying about the type of
interface to which it is connected. This insulation makes applications more
robust and portable across interfaces. Typically adeviceis an instrument, but
could be acomputer, a plotter, or a printer.

All devices that you will be using need to be connected and in working condition
prior to thefirst VTL function call (viOpenDefaultRM). The systemis
configured only on thefirst viOopenDefaultRM per process. Therefore, if
viOpenDefaultRM is called without devices connected and then called again
when devices are connected, the devices will not be recognized. You must close
ALL resource manager sessions and re-open with all devices connected and in
working condition.

Device Sessions

There are two parts to opening a communications session with a specific device.
First you must open a session to the default resource manager with the
viOpenDefaultRM function. Thefirst call to thisfunction initializes the default
resource manager and returns a session to that resource manager session. You only
need to open the default manager session once. However, subsequent callsto
viOpenDefaul tRM returns a session to a unique session to the same default
resource manager resource.

Next, you open a session with a specific device with the viopen function. This
function uses the session returned from viOpenDefaul tRM and returnsits own
session to identify the device session. The following shows the function syntax:

viOpenDefaultRM (sesn);
viOpen (sesn, rsrcName, accessMode, timeout, vi);

The session returned from vioOpenDefaul tRM must be used in the sesn parameter
of the viOpen function. The vioOpen function then uses that session and the
device address specified in the rsrcName parameter to open a device session. The
Vi parameter in viOpen returns a session identifier that can be used with other
VTL functions.

Your program may have several sessions open at the same time by creating
multiple session identifiers by calling the viopen function multiple times.

52 Chapter 2

Programming Fundamentals
Programming in C Using the VTL

The following summarizes the parametersin the previous function calls:

sesn Thisis asession returned from the viOpenDefaul tRM
function that identifies the resource manager session.

rsrcName Thisis aunique symbolic name of the device (device address).
accessMode This parameter isnot used for VTL. UseVI_NULL.
timeout This parameter isnot used for VTL. UseVI_NULL.

vi Thisisapointer to the session identifier for this particul ar
device session. This pointer will be used to identify this device
session when using other VTL functions.

The following is an example of opening sessions with a GPIB multimeter and a
GPIB-VXI scanner:

ViSession defaultRM, dmm, scanner;

viOpenDefaultRM(&defaultRM) ;

viOpen (defaultRM, "GPIBO::22::INSTR", VI NULL,
VI_NULL, &dmm);

viOpen (defaultRM, "GPIB-VXIO::24::INSTR", VI NULL,
VI_NULL, &scanner);

viClose (scanner);
viClose (dmm) ;
viClose (defaultRM) ;

The above function first opens a session with the default resource manager. The
session returned from the resource manager and a device address is then used to
open a session with the GPIB device at address 22. That session will now be
identified asdmm when using other VTL functions. The session returned from the
resource manager is then used again with another device address to open a session
with the GPIB-V X1 device at primary address 9 and VV X1 logical address 24. That
session will now be identified as scanner when using other VTL functions. See the
following section for information on addressing particular devices.

Chapter 2 53

NOTE

Programming Fundamentals
Programming in C Using the VTL

Addressing a Session

As seen in the previous section, the rsrcName parameter in the viOpen functionis
used to identify a specific device. This parameter is made up of the VTL interface
name and the device address. The interface name is determined when you run the
VTL Configuration Utility. This name is usualy the interface type followed by a
number. Thefollowing tableillustrates the format of the rsrcName for the different
interface types

Interface Syntax

VXI VXI [board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI [board]::VXI logical addresy::INSTR]

GPIB GPIB [board]::primary address]::secondary address][::INSTR]

The following describes the parameters used above:

board This optional parameter is used if you have more than one
interface of the same type. The default value for board is 0.

VS logical

address Thisisthelogical address of the VXI instrument.

primary

address Thisisthe primary address of the GPIB device.

secondary

address This optional parameter is the secondary address of the GPIB
device. If no secondary addressis specified, none is assumed.

INSTR Thisisan optional parameter that indicates that you are
communicating with aresource that is of type INSTR, meaning
instrument.

If you want to be compatible with future releases of VTL and VISA, you must
include the INSTR parameter in the syntax.

The following are examples of valid symbolic names:

X10::24::INSTR Device at VXI logical address 24 that is of VISA type INSTR.

VX12::128 Device at VXI logical address 128, in the third VX1 system
(VXI2).

GPIB-VX10::24 A VXI device at logical address 24. ThisVXI deviceis
connected viaa GPIB-V X| command module.

GPIBO::7::0 A GPIB device at primary address 7 and secondary address 0 on
the GPIB interface.

Thefollowing is an example of opening a device session with the GPIB device at
primary address23.

54 Chapter 2

Programming Fundamentals
Programming in C Using the VTL

ViSession defaultRM, vi;

viOpenDefaultRM (&defaultRM) ;

viOpen (defaultRM, "GPIBO::23::INSTR", VI NULL,VI NULL,&vi);

viClose(vi) ;

viClose (defaultRM) ;

Closing a Session

The viClose function must be used to close each session. You can close the
specific device session, which will free all data structures that had been alocated
for the session. If you close the default resource manager session, all sessions
opened using that resource manager will be closed.

Since system resources are al so used when searching for resources (viFindRsrc)
or waiting for events (viWaitOnEvent), the viClose function needsto be
called to free up find lists and event contexts.

Chapter 2 55

Programming Fundamentals
For More Information

For More Information

Adgilent Developer Network Website: The Agilent Developer Network is a
repository of information and services for those who develop test systems.
ADN isuseful for T& M engineers connecting instruments to computers who
use Microsoft® Windows®-based applications and application development
environments.

http://www.adn.tm.agilent.com

The Agilent MXA website has many topics under the Technical Support tab,
including Application Notes.:

http://www.agilent.com/find/mxa

56

Chapter2

http://www.adn.tm.agilent.com
http://www.agilent.com/find/mxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/mxa

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

STATus Subsystem (No equivalent front-panel keys)

The following graphics show the current X-Series Status Register Subsystem

implementation.

X-Series Status Byte Register System

STATus:QUEStionable: POWer .
Fesarean] Status Byte Register
Resaraed o 1 M
Resarved o 2 Hnisedt L
Resorved] + ——
50 WHz Input Par oo Hi%hfnr(:: - : ‘E 2 _ EmorEvan Quawa Summary | 2
Esarva =] I i i 2 |
R;‘;ﬁ:: ; ki He 3 % + Quasticnable Stas Summa 3
Presslecior e 7 & = g o Message Axaiabic (MAY) 4
t.Jnuae: =ia g S Std. Everit Satus Bum | &
nusen 411 H [s] F—mo
Unisset 12 STATus:QUEStionable Fed. Serv.3um ras [6
el =13 — : T —
Liniesas g4 Resarved = g Operalion Status Sum [7
Always Zero (0) {15} Resarvad—| 1
Reserved— 2
STATus:QUEStionable: TEMPeratura POWer Summan—| 3
Rescreed 0 |]
Wrinsad - 1 (TEMPerature Sum)— 4
u"'::]ﬂ . : FREQuency Sum— 5 5 o
Urniiged - 4 o Feserved={ 8 E s 1s % 5
Hm:z'ﬁ ___IE._ Reseread— 7 &:Ezﬂ'i'
Um”d: g Eé 2 i -+ CALibration Summary— 8 é & 3._% 2
Urnsed 4 & =l E& e INTegrity Sum={ 4 E E E ‘E' E
Uriused < @ Bl |=[= Resarved—] 10 lELE 2
Uriuzed =10 = A
usad — 11 [5) Reserved— 11
L‘,_',",I"'QEHN] "‘; Resarved— 12
Linused o 14 Resrend=—{ 13
Abways Zero (0) 415 | Reserend— 14
STATus:QUEStionable:FREQuency Abways Zero ()= 18
Reserved J o .
Freq Ref Uriocked] Standard Event Status Register
2" L0 Unlocked - o Opar. Complete o
Feseroed - 2 Rexg. Gug Control i
Reserved = 4 _ Query Error - 2 k3 B
Reserved = 5 2 T Dav, Dep, Emar o 3 % % 5l= = 5
IF_Sy"mU”m“'E ﬂ!ﬁ,bih Excrisian Eror o 4 ziggﬁ&)—
Gal e Unlocked] 7 SEEIE+) Command Emor -| & Flefal=ls 2
Even Sec Clock Synth Unlocked = 8 clu 2 e E HE 5] =
Resarved o o =1 B i User Requast o & H =
o s e Power On = 7 g'.:Egé
Ext Ref missing or aut of range - 10 t“f""’ el KM (7]
Unused -1 11 R
Urused = 12 STATus:OPERation
Uriieseeed =f 13
Ui = 1 Ghlibraing < g
Atwaya Zen (3) - 15 [—
J'Il
STATus:QUEStionable: CALibration i P P
Ragardad [0) SWEapINg o 5 P, 0
Reserdad o 1 Reseried {4 P &)
Reserved o 2 AL
RF bign Falura o 3 Walling for TRIGger - 5 2 o j*
IF Mlign Failure = 4 5 - Reserd = § %’EEEE 1€
L0 Mign Failure o 5 & e Resered o 7 4 E@-
ADC Algn Failre - & uggﬁg({_}_ PAUSed g SE';EE
I =
O —wmmm i 1: AL reemei] 2 7 EE LS !
Feserved <10 5._:_.:&5 DC Coupled o 10 L1 N LA i [} TIE|[4|3[2|1|0
{:)7!«"!71 Skipped Sum = 1 P) ¥l Fesered < 11
#ign RF Mow Meeded 12
= aerved 11 Reserved 4 12 Service Request
Align Al Now Neaded - 14 Rusered - 13 Enable Register
Always Zero |0) 15 | Resened o 14
Absays Zere (04 45

Chapte

r2

57

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Additional Registers:

STATus:QUEStionable: INT egrity: S1GNal STATus:QUESion=ble: INTegrity
[for B==e Analyzer] for Base Andyzer]
Urwzd o | S5 NA Summary]
Resereed | No Resulk Auali=he —
Burs| Mol Fourd {2 MezmiEme nl Timeau |
Timirg Erer { g _ —— NG abraed Eum mary—]
Carkers) ncoreclof misAng 4 o Hl IFtAD G Ouer Range —| i o
Freq OuloTRarge < » LA Rezerued —| b [z [
=yrc Emor - 8 HHE Reserued —| g0 (Y
bemod Bror — ¢ ol remicen | [ak — 3 [=]= E Hi To bil & STATus 1 UESIonshle
Sgra ko Moy — a2 g E o Aquklkon FAloe - E & o
Uretsed — 3 | EFE Memory Error _EEEE
Ureesed —{ 1o o |~ 7 W Errar — g HIHIH
Urigsed {11 O T ger Error — o el
Uraesed —{12 ruald bakl -
Urazed —{13 Lo may cuerload IF -
Urieed —{1e S ling Madiied |
Abrmys Ter [| 1a | Alwewys Tero (O | s |

ETATus:QUEStionable: INTegrity :UN Galibrated
[for Base Analyzer]

Meas Uncal —

Rezerued

Ho Long Code Phase

AC coupled : Ay urepecd < 10MHI —
Usercal _|

Calbrakn —

Uraesed —

D aE Uncalbraled Sum

uu-nun-uu-nl

i ondl Bon Regls er
K- Trare Fllier
L+ Trare Fller
Euenil Aeglzler

Ureed — 1
A= Zero) — 13}

STATus: QUEStionable:C ALibraion: SKIPped

Hign A.F Skipped —
Uresed —
Uriered —
Uriered —
Uriered .
Urieed —
Ureeed <
Urieed —
Urieed —
Ureeed —
Ureeed <
Uraesed —
Uriered —
Ureeed —
Urieed —i=

Alwmys Zero [15 |

-

T bl 11 ETATus QU E=korabe Calbralon

: ordlbon Regls Er
(- 1 Ttares Fllker
[+ Ttares Fllier

STATus: QUEStionable:C AlLibration: EXTended: FAlLure

Rezerued

Rezerued T
Charackedze Preselecir Fae]
Uriesed < 4
Urised o . 5 o
Uresed ;. A= [E
Uriged - &] ul::} »
Hﬂ:ﬂ 1: sl [To bl 5 STATE @ U ESlonable 5 ALb@ln
Ureeed o & = = [z
Uresed I
Ureeed i o b
Uresed J,;
Ureeed -
Uresed =
AwaysZera i) i |

ST ATus: QUEStionable: C ALibraion: EXTended: NEEDed

Urieed
Rezerued
Rezerued
Reseued

rgul alernakon rol calbraked

Urersed

Urersed

Urersed

Urersed

Urersed

Urited

Urieed

Uresed

Urued

Uresed =

Alweys Zero (0 i |

r

[+ Trars Fller
Enl FEQIZEr
BN

T bl12 STATu G UE=1orable & ALbalon

Cordilion Regls er
- =33

Rev 7 December 11, 2007

58 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Detailed Description

The STATus subsystem remote commands set and query the status hardware
registers. This system of registers monitors various events and conditionsin the
instrument. Software written to control the instrument may need to monitor some
of these events and conditions.

All status register commands are sequential. Most commands can be started
immediately and will overlap with any existing commands that are already
running. Thisis not true of status commands. All the commands in the spectrum
analyzer are assumed to be overlapped unless a command description specifically
saysthat it is sequential.

What Are Status Registers

The status system contains multiple registers that are arranged in a hierarchical
order. The lower-level status registers propagate their data to the higher-level
registers in the data structures by means of summary bits. The status byte register
is at the top of the hierarchy and contains general status information for the
instrument’s events and conditions. All other individual registers are used to
determine the specific events or conditions. For adiagram of the registers and their
interconnections, see above.

The operation and questionable status registers are sets of registersthat monitor the
overal instrument condition. They are accessed with the STATus: OPERation and
STATus.QUEStionable commands in the STATus command subsystem. Each
register set is made up of five registers.

« Condition Register — It reports the real-time state of the signals monitored by
thisregister set. Thereis no latching or buffering for a condition register.

« Positive Transition Register — Thisfilter register controls which signals will set
ahbit in the event register when the signal makes alow to high transition (when
the condition bit changes from 0 to 1).

* Negative Transition Register — This filter register controls which signals will
set abit in the event register when the signal makes a high to low transition
(when the condition bit changes from 1 to 0).

« Event Register — It latches any signal state changes, in the way specified by the
filter registers. Bitsin the event register are never cleared by signal state
changes. Event registers are cleared when read. They are also cleared by *CLS
and by presetting the instrument.

« Event Enable Register — It controls which of the bits, being set in the event
register, will be summarized as a single output for the register set. Summary
bits are then used by the next higher register.

The STATus.QUEStionable registers report abnormal operating conditions. The
status register hierarchy is:

1. The summary outputs from the six STATus:QUEStionable:<keyword> detail
registers are inputs to the STATus:QUEStionable register.

Chapter 2 59

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

2. The summary output from the STATus:QUEStionable register isan input to the
Status Byte Register. See the overall system in Figure at the beginning of this
section.

The STATus.OPERation register set has no summarized inputs. The inputs to the
STATus.OPERation:CONDition register indicate the real time state of the
instrument. The STATus.OPERation:EV ENL register summary output is an input
to the Status Byte Register.

What Are Status Register SCPI Commands

Most monitoring of the instrument conditionsis done at the highest level using the
IEEE common commands indicated below. Complete command descriptions are
available in the IEEE commands section at the beginning of the language
reference. Individual status registers can be set and queried using the commandsin
the STATus subsystem of the language reference.

o *CLS(clear status) clears the status byte by emptying the error queue and
clearing all the event registers.

o *ESE, *ESE? (event status enable) sets and queries the bitsin the enable
register part of the standard event status register.

» *ESR? (event status register) queries and clears the event register part of the
standard event status register.

» *OPC, *OPC? (operation complete) sets the standard event status register to
monitor the completion of all commands. The query stops any new commands
from being processed until the current processing is complete, then returns a
‘1.

e *PSC, *PSC? (power-on state clear) setsthe power-on state so that it clearsthe
service request enable register and the event status enable register at power on.

» *SRE, *SRE? (service request enable) sets and queries the value of the service
request enable register.

o *STB? (status byte) queriesthe value of the status byte register without erasing
its contents.

How to Use the Satus Registers

A program often needs to be able to detect and manage error conditions or changes
in instrument status. There are two methods you can use to programmatically
access the information in status registers:

» The polling method
» The service request (SRQ) method

In the polling method, the instrument has apassive role. It only tells the controller
that conditions have changed when the controller asks the right question. In the
SRQ method, the instrument takes a more active role. It tells the controller when
there has been a condition change without the controller asking. Either method
allows you to monitor one or more conditions.

60 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

The polling method works well if you do not need to know about changes the
moment they occur. The SRQ method should be used if you must know
immediately when a condition changes. To detect a change using the polling
method, the program must repeatedly read the registers.

Use the SRQ method when:

« you need time-critical notification of changes

« you are monitoring more than one device which supports SRQs
* you need to have the controller do something else while waiting
» you can't afford the performance penalty inherent to polling
Use polling when:

« your programming language/devel opment environment does not support SRQ
interrupts

« you want to write asimple, single-purpose program and don’t want the added
complexity of setting up an SRQ handler

* To monitor acondition:

1. Determine which register contains the bit that reports the condition.
2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

You can monitor conditions in different ways.

* Check the current instrument hardware and firmware status.

Do this by querying the condition registers which continuously monitor status.
These registers represent the current state of the instrument. Bitsin a condition
register are updated in real time. When the condition monitored by a particular bit
becomes true, the bit is set to 1. When the condition becomes false, the bit is reset
to 0.

« Monitor a particular condition (bit).

You can enable a particular bit(s), using the event enable register. The instrument
will then monitor that particular condition(s). If the bit becomestrue (Oto 1
transition) in the event register, it will stay set until the event register is cleared.
Querying the event register allows you to detect that this condition occurred even
if the condition no longer exists. The event register can only be cleared by
querying it or sending the * CL S command.

« Monitor aparticular type of changein a condition (bit).

— Thetransition registers are preset to register if the condition goes from O to
1 (falseto true, or a positive transition).

— This can be changed so the selected condition is detected if the bit goes
from 1 to O (true to false, or a negative transition).

Chapter 2 61

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

— It can also be set for both types of transitions occurring.

— Or it can be set for neither transition. If both transition registers are set to 0
for a particular bit position, that bit will not be set in the event register for
either type of change.

Using a Satus Register

Each bit in aregister is represented by a numerical value based on its location. See
figure below. This number is sent with the command to enable a particular bit. If
you want to enable more than one bit, you would send the sum of all the bits that
you want to monitor.

Figure: Status Register Bit Values

(/]
F /e
B S/ X/ v/ o/ 0/ >
o] o)) v/ o/ o
& E88/8/8/8/8/5/5 8/ /s o/~
o~
g
Q

Bit Number (151413 (12({11|10(|9 |8 |7 |6|5]|4|3|2|1 |0

STATus:OPERation:ENABle <num>
STATus:OPERation:ENABIe?

Standard Operation Event Enable Register ok730a

Bit 15 is not used to report status.
Example 1.

1. Toenable bit 0 and bit 6 of standard event status register, send the command
*ESE 65 because 1 + 64 = 65.

2. Theresults of aquery are evaluated in asimilar way. If the * STB? command
returns adecimal value of 140, (140 = 128 + 8 + 4), then bit 7 istrue, bit 3is
true and bit 2 istrue.

62 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Example 2:

1. Suppose you want to know if an Auto-trigger Timeout occurs, but you only
care about that specific condition. For example, you want to know what was
happening with bit 10 in the Status Questionable Integrity register, and do not
care about any other bits.

2. It'susually agood ideato start by clearing all the status registers with *CLS.

3. Sending the STAT:QUES.INT:ENAB 1024 command |ets you monitor only bit
10 events, instead of the default monitoring all the bitsin the register. The
register default is for positive transition events (0 to 1 transition) that show
when an auto-trigger timeout occurs. If you want to know when the
Auto-trigger timeout condition is cleared, set the STAT:QUES:INT:PTR 0 and
the STAT:QUES.INT:NTR 32767.

4. So now the only output from the Status Questionable Integrity register will
come from abit 10 positive transition. That output goesto the Integrity Sum bit
9 of the Status Questionable register.

5. You can do asimilar thing with this register to look at only bit 9 using
STAT:QUES:ENAB 512.

6. The Status Questionable register output goes to the “ Status Questionable
Summary” bit 3 of the Status Byte Register. The output from this register can
be enabled using the * SRE 8 command.

7. Finally, you can use the serial polling functionality available for the particular
bus/software that you are using to monitor the Status Byte Register. (You can
also use * STB?to poll the Status Byte Register.)

Using the Service Request (SRQ) Method

Your language, bus, and programming environment must be able to support SRQ
interrupts. (For example, BASIC used with VX1-11.3 (GPIB over LAN). When
you monitor a condition with the SRQ method, you must:

1. Determine which bit monitors the condition.

2. Determine how that bit reports to the request service (RQS) bit of the status
byte.

3. Send SCPI commands to enable the bit that monitors the condition and to
enable the summary bits that report the condition to the RQS hit.

4. Enable the controller to respond to service requests.

When the condition changes, the instrument setsits RQS bit. The controller is
informed of the change as soon as it occurs. As aresult, the time the controller
would otherwise have used to monitor the condition can be used to perform other
tasks. Your program determines how the controller responds to the SRQ.

Chapter 2 63

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Generating a Service Request

To use the SRQ method, you must understand how service requests are generated.
Bit 6 of the status byte register is the request service (RQS) bit. The * SRE
command is used to configure the RQS bit to report changes in instrument status.
When such a change occurs, the RQS hit is set. It is cleared when the status byte
register is queried using * SRE? (with a serial poll.) It can be queried without
erasing the contents with *STB?.

When aregister set causes a summary bit in the status byte to change from 0to 1,
theinstrument can initiate the service request (SRQ) process. However, the process
isonly initiated if both of the following conditions are true:

» The corresponding bit of the service request enable register is also set to 1.

» Theinstrument does not have a service request pending. (A service request is
considered to be pending between the time the instrument’s SRQ processis
initiated and the time the controller reads the status byte register.)

The SRQ process sets the SRQ true. It also sets the status byte's request service
(RQS) bit to 1. Both actions are necessary to inform the controller that the
instrument requires service. Setting the SRQ line only informs the controller that
some device on the bus requires service. Setting the RQS bit allows the controller
to determine which instrument requires service.

If your program enables the controller to detect and respond to service requests, it
should instruct the controller to perform a seria poll when the SRQ is set true.

Each device on the bus returns the contents of its status byte register in response to
this poll. The device who's RQS bit is set to 1 is the device that requested service.

When you read the instrument’s status byte register with a serial poll, the RQS bit
isreset to 0. Other bitsin the register are not affected.

If the status register is configured to SRQ on end-of-measurement and the
measurement is in continuous mode, then restarting a measurement (INIT
command) can cause the measuring bit to pulse low. This causes an SRQ when you
have not actually reached the "end-of-measurement” condition. To avoid this:

1. Set INITiate: CONTinuous off.
2. Set/enable the status registers.
3. Restart the measurement (send INIT).

64 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Satus Register System

The hardware status registers are combined to form the instrument status system.
Specific status bits are assigned to monitor various aspects of the instrument
operation and status. See the diagram of the status system above for information
about the bit assignments and status register interconnections.

The Status Byte Register

Status Byte Register

0 | Unused

Unused

Error/Event Queue Summary Bit

Data Questionable Summary Bit

Message Available (MAV)

Standard Event Summary Bit
Request Service (RQS)/MSS
Operation Status Summary Bit

N|ojla|~lwd|—=

R g 1T

0 et
-0 et

(o)

)
o}
»(go

_—
-

Service Request Enable Register

k7T

The RQS bit isread and reset by aserial poll. The same bit position (MSS) is read,
non-destructively by the * STB? command. If you serial poll bit 6it isread as RQS,
but if you send *STB it reads bit 6 as MSS. For more information refer to IEEE
488.2 standards, section 11.

Chapter 2 65

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

¢ § F/E5/)F/)S
S/8)8/)s/ &/

* Ay
$/8/8/5/8/8&/8/8
$/E/8/E/5/5/S /S

Bit Number | 7 6 5 4 3 2 1 0
*STB?
Status Byte Register ok725a
Bit Description
0,1 Thesebhitsareawayssetto 0.
2 A 1inthishit position indicates that the SCPI error queue is not empty which
means that it contains at |east one error message.
3 A linthishbit position indicates that the data questionable summary bit has been

set. The data questionable event register can then be read to determine the
specific condition that caused this bit to be set.

4 A linthisbit position indicates that the instrument has data ready in the output
gueue. There are no lower status groups that provide input to this bit.

5 A 1inthisbit position indicates that the standard event summary bit has been
set. The standard event status register can then be read to determine the specific
event that caused this bit to be set.

6 A linthisbit position indicates that the instrument has at least one reason to
report a status change. This bit isalso called the master summary status bit
(MSS).

7 A linthisbit position indicates that the standard operation summary bit has

been set. The standard operation event register can then be read to determine the
specific condition that caused this bit to be set.

To query the status byte register, send the command * STB? The response will be
the decimal sum of the bitswhich are set to 1. For example, if bit number 7 and bit
number 3 are set to 1, the decimal sum of the 2 bitsis 128 plus 8. So the decimal
value 136 is returned. The * STB command does not clear the status register.

In addition to the status byte register, the status byte group also containsthe service
reguest enable register. Thisregister lets you choose which bitsin the status byte
register will trigger a service request.

Send the * SRE <integer> command where <integer> is the sum of the decimal
values of the bits you want to enable plus the decimal value of bit 6. For example,

66 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

assume that you want to enable bit 7 so that whenever the standard operation status
register summary bit isset to 1 it will trigger a service request. Send the command
*SRE 192 (because 192 = 128 + 64). You must always add 64 (the numeric value
of RQS bit 6) to your numeric sum when you enable any bits for a service request.
The command * SRE? returns the decimal value of the sum of the bits previously

enabled with the * SRE <integer> command.

The service request enable register presets to zeros (0).

@
N
N

N AV A YA

& N ©) ~ o "
a&
&

Bit Number 7 6 5 4 3 2 1

*SRE <num>
*SRE?

Service Request Enable Register

ck726a

Sandard Event Status Register

_@

Operation Complete
Request Bus Control
Query Error
Device Dependent Error
Execution Error
Command Error
User Request

Power On

Standard 7 6 5 4 3 210

Register

Erablfegeer | 7 6 5 4 3 2.1 0

iy To Status Byte Register Bit #5

k7774

Chapter 2

67

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

The standard event status register contains the following bits:

N
IS & S
QO G 45
BN N @
§ Q)A o w&\‘ ~ Q\Q)
S ¥/ 90/ 86/ 3 L/ &
(] >4 & & < IS 19
Q) & @ I 0 O
I N e o & O O <
(e < [e) S *o
O < Qo b Q & 9 .,é)
¢/ X/ &/5/8 /) 8/ &
§/8/$8/8/s/8/8/ &
N O & & €] Q¢ O
Bit Number | 7 6 5 4 3 2 1 0
*ESR?
Standard Event Status Register ok727a

Bit

Description

A 1inthisbit position indicates that all pending operations were compl eted
following execution of the * OPC command.

Thisbit isfor GPIB handshaking to request control. Currently itissetto O
because there are no implementations where the spectrum analyzer controls
another instrument.

A linthisbit position indicates that a query error has occurred. Query errors
have SCPI error numbers from -499 to -400.

A 1inthisbit position indicates that a device dependent error has occurred.
Device dependent errors have SCPI error numbers from -399 to -300 and 1 to
32767.

A 1inthishit position indicates that an execution error has occurred. Execution
errors have SCPI error numbers from -299 to -200.

A linthisbit position indicates that acommand error has occurred. Command
errors have SCPI error numbers from -199 to -100.

A linthisbit position indicates that the LOCAL key has been pressed. Thisis
true even if the instrument isin local lockout mode.

A 1linthisbit position indicates that the instrument has been turned off and
then on.

The standard event status register is used to determine the specific event that set bit
5 in the status byte register. To query the standard event status register, send the
command *ESR?. The response will be the decimal sum of the bits which are
enabled (set to 1). For example, if bit number 7 and bit number 3 are enabled, the
decimal sum of the 2 bitsis 128 plus 8. So the decimal value 136 is returned.

In addition to the standard event status register, the standard event status group

68

Chapter2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

also contains a standard event status enable register. This register lets you choose
which bitsin the standard event status register will set the summary bit (bit 5 of the
status byte register) to 1. Send the * ESE <integer> command where <integer> is
the sum of the decimal values of the bits you want to enable. For example, to
enable bit 7 and bit 6 so that whenever either of those bitsis set to 1, the standard
event status summary bit of the status byte register will be set to 1, send the
command * ESE 192 (128 + 64). The command * ESE? returns the decimal value of
the sum of the bits previously enabled with the * ESE <integer> command.

The standard event status enable register presetsto zeros (0).

(]
N
K o / w
& AR & /% @ » o ~
&
(<)

&

Bit Number | 7 6 5 4 3 2 1 0

*ESE <num>
*ESE?

Standard Event Status Enable Register okrse

Operation and Questionable Satus Registers

The operation and questionable status registers are registers that monitor the
overall instrument condition. They are accessed with the STATus: OPERation and
STATus.QUESti onable commands in the STATus command subsystem. See the
figure at the beginning of this chapter.

Operation Satus Register

The operation status register monitors the current instrument measurement state. It
checksto seeif theinstrument is calibrating, sweeping, or waiting for atrigger. For
more information see the * OPC? command located in the [EEE Common
Commands section.

Bit Condition Operation

0 Cdlibrating Theinstrument is busy executing its Align Now
process

3 Sweeping Theinstrument is busy taking a sweep.

4 Measuring Theinstrument is busy making a measurement.

M easurements often require multiple sweeps. They
areinitiated by keys under the MEASURE key or
with the MEA Sure group of commands.

The bit isvalid for most X-Series Modes.

Chapter 2 69

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

5 Waiting for trigger ~ The instrument is waiting for the trigger conditions
to be met, then it will trigger a sweep or
measurement.

8 Paused Theinstrument is paused (waiting) because you have

pressed the Pause Meas Control key or send the
INITiate:PAUSe command.

Bit is currently only valid for Modes. ESA/PSA:
Spectrum Analysis, Phase Noise, and ESA:
Bluetooth, cdmaOne, GSM

Questionable Status Register

The questionabl e status register monitors the instrument’s condition to see if
anything questionable has happened to it. It islooking for anything that might
cause an error or a bad measurement like a hardware problem, an out of calibration
situation, or aunusual signal. All the bits are summary bits from lower-level event
registers.

Bit Condition Operation

3 Power summary The instrument hardware has detected a power
unleveled condition.

4 Temperature summary Theinstrument is still warming up.

5 Frequency summary The instrument hardware has detected an unlocked
condition or a problem with the external frequency
reference.

8 Calibration summary The instrument has detected a hardware problem
while doing the automatic internal alignment
process.

9 Integrity summary The instrument has detected a questionable

measurement condition such as: bad timing, bad
signal/data, timeout problem, signal overload, or
“meas uncal”.

STATus Subsystem Command Descriptions

The STATus subsystem controls the SCPI-defined instrument status reporting
structures. Each status register has a set of five commands used for querying or
masking that particular register.

Numeric values for bit patterns can be entered using decimal or hexadecimal
representations. (i.e. 0 to 32767 is equivalent to #H0 to #H7FFF. It isaso equal to
all ones, 111111111111111) See the SCPI Basics information about using bit
patterns for variable parameters.

70 Chapter 2

NOTE

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)
Operation Register
Operation Condition Query

This query returns the decimal value of the sum of the bitsin the Status Operation
Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command : STATus : OPERation:CONDition?
Example STAT:OPER:COND?

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Instrument YW Revision Prior to A.02.00

Operation Enable

This command determines which bits in the Operation Event register, will set the
Operation Status Summary bit (bit 7) in the Status Byte Register. The variable
<integer> is the sum of the decimal values of the bits you want to enable.

The preset condition is to have al bitsin this enable register set to 0. To have any
Operation Events reported to the Status Byte Register, one or more bits need to be
setto 1.

Mode All

Remote Command :STATus :OPERation:ENABle <integer>

:STATus : OPERation:ENABle?

Example STAT:OPER:ENAB 1 Setsthe register so that Align Now
operation will be reported to the Status Byte Register.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00

Revision

Chapter 2 71

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Operation Event Query

This query returns the decimal value of the sum of the bitsin the Operation Event
register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus :OPERation[:EVENt] ?
Example STAT:OPER?

Preset 0

SCPI Status BitOPC Sequential command

Dependencies

Instrument S'W Revision Prior to A.02.00

Operation Negative Transition

This command determines which bits in the Operation Condition register will set
the corresponding hit in the Operation Event register when the condition register
bit has a negative transition (1 to 0). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All
Remote Command :STATus :OPERation:NTRansition <integers>

:STATus :OPERation:NTRansition?

Example STAT:OPER:NTR 1
Align Now operation complete will be reported to the
Status Byte Register.

Preset 0

SCPI Status BitOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument S'W Revision Prior to A.02.00

72 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Operation Positive Transition

This command determines which bitsin the Operation Condition register will set
the corresponding bit in the Operation Event register when the condition register
bit has a positive transition (0 to 1). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus :OPERation:PTRansition <integers

:STATus :OPERation:PTRansition?

Example STAT:OPER:PTR 1 Align Now operation beginning
will be reported to the Status Byte Register.
Preset 32767
SCPI Status BitsOPC Sequential command
Dependencies
Min 0
Max 32767
Instrument S'W Revision Prior to A.02.00
Preset the Satus Byte

Sets bitsin most of the enable and transition registers to their default state. It
presets al the Transition Filters, Enable Registers, and the Error/Event Queue
Enable. It has no effect on Event Registers, Error/Event QUEuUEe, |EEE 488.2 ESE,
and SRE Registers as described in |IEEE Standard 488.2-1992, | EEE Standard
Codes, Formats, Protocols, and Common Commands for Use with ANSI/IEEE Std
488.1-1987. New York, NY, 1992

Remote Command: : STATus : PRESet
Example: STAT:PRES
Instrument /W Revision: Prior to A.02.00

Chapter 2 73

NOTE

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)
Questionable Register

Questionable Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command : STATUS : QUESt ionable: CONDition?
Example STAT:QUES:COND?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Instrument S'W Revision Prior to A.02.00

Questionable Enable

This command determines which bitsin the Questionable Event register will set
the Questionabl e Status Summary bit (bit3) in the Status Byte Register. The
variable <integer> is the sum of the decimal values of the bits you want to enable.

The preset condition is all bitsin this enable register set to 0. To have any
Questionable Events reported to the Status Byte Register, one or more bits need to
be set to 1. The Status Byte Event Register should be queried after each
measurement to check the Questionable Status Summary (bit 3). If itisequal to 1,
acondition during the test may have made the test resultsinvalid. If itisequal to O,
thisindicates that no hardware problem or measurement problem was detected by
the analyzer.

Mode All

Remote Command :STATuUS :QUEStionable:ENABle 16
Setsthe register so that temperature summary will
be reported to the Status Byte Register

:STATus : QUEStionable :ENABle?

Example STAT:OPER:PTR 1
Align Now operation beginning will be reported to
the Status Byte Register.

Preset 0

SCPI Status BitOPC Sequential command

Dependencies

74 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Min 0
Max 32767
Instrument S'W Revision Prior to A.02.00

Questionable Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command : STATus : QUEStionable [: EVENt] ?
Example STAT:QUES?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Instrument YW Revision Prior to A.02.00

Questionable Negative Transition

This command determines which bits in the Questionable Condition register will
set the corresponding bit in the Questionable Event register when the condition
register bit has a negative transition (1 to 0). The variable <integer> is the sum of
the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable:NTRansition 16

Temperature summary ‘ questionable cleared’ will be
reported to the Status Byte Register.

:STATus : QUEStionable :NTRansition?
Example STAT.:QUES.NTR 16

Temperature summary ‘ questionable cleared’ will be
reported to the Status Byte Register.

Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

Min 0

Chapter 2 75

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Max

Instrument YW Revision

32767
Prior to A.02.00

Questionable Positive Transition

This command determines which bits in the Questionable Condition register will
set the corresponding bit in the Questionable Event register when the condition
register bit has a positive transition (0 to 1). The variable <integer> is the sum of
the decimal values of the bits that you want to enable.

Mode

Remote Command

Example

Preset

SCPI Status BitsOPC
Dependencies

Min
Max

Instrument S'W Revision

All

:STATus :QUEStionable:PTRansition <integers

:STATus : QUEStionable: PTRansition?

STAT:QUES:PTR 16 Temperature summary ‘ questionable
asserted’ will be reported to the Status Byte Register.

32767

Sequential command

0
32767
Prior to A.02.00

76

Chapter2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Register

Questionable Calibration Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Calibration Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command : STATuUS : QUESt ionable:CALibration: CONDition?
Example STAT:QUES.CAL:COND?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

I nstrument YW Prior to A.02.00

Revision

Questionable Calibration Enable

This command determines which bits in the Questionable Calibration Condition
Register will set bitsin the Questionable Calibration Event register, which also sets
the Calibration Summary bit (bit 8) in the Questionable Register. The variable
<integer> is the sum of the decimal values of the bits you want to enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration: ENABle
<integers>

:STATus : QUEStionable:CALibration: ENABle?

Example STAT:QUES.CAL:ENAB 16384 Can be used to query if an
alignment is needed, if you have turned off the automatic
alignment process.

SCPI Status BitsyOPC ~ Sequential command

Dependencies

Min 0

Max 32767
Instrument S'W Prior to A.02.00
Revision

Chapter 2 77

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Cdlibration Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus :QUEStionable:CALibration[:EVENt] ?
Example STAT:QUES:CAL?

Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

Instrument SY'W Prior to A.02.00
Revision

Questionable Calibration Negative Transition

This command determines which bits in the Questionable Calibration Condition
register will set the corresponding bit in the Questionable Calibration Event
register when the condition register bit has a negative transition (1 to 0). The
variable <integer> is the sum of the decimal values of the bits that you want to
enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration:NTRansition
<integer>

:STATus : QUEStionable:CALibration:NTRansition
2

Example STAT:QUES:CAL:NTR 16384 Alignment is not required.
Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00

Revision

78 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Positive Transition

This command determines which bits in the Questionable Calibration Condition
register will set the corresponding bit in the Questionable Calibration Event
register when the condition register bit has a positive transition (0 to 1). The
variable <integer> is the sum of the decimal values of the bits that you want to
enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration: PTRansition
<integers

:STATus : QUEStionable:CALibration: PTRansition?

Example STAT:QUES.CAL:PTR 16384 Alignment is required.
Preset 32767

SCPI Status Sequential command

BitsOPC

Dependencies

Min 0

Max 32767

Instrument S/'W Prior to A.02.00

Revision

Questionable Calibration Skipped Register

Questionable Calibration Skipped Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Cadlibration Skipped Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus :QUEStionable:CALibration: SKIPped:
CONDition?

Example STAT:QUES.CAL:SKIP.COND?

Preset 0

SCPI Status Bits/OPC Sequential command
Dependencies

Instrument /W Revision Prior to A.02.00

Chapter 2 79

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Skipped Enable

This command determines which bits in the Questionable Calibration Skipped
Condition Register will set bits in the Questionable Calibration Skipped Event
register, which also sets hit 11 of the Questionable Calibration Register. The
variable <integer> is the sum of the decimal values of the bits you want to enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration: SKIPped:
ENABle <integer>

:STATus : QUEStionable:CALibration: SKIPped:

ENABle?

Example STAT:QUES:CAL:SKIP:ENAB 1 Can be used to query if
an EMI alignment skipped condition is detected

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument SY'W Revision Prior to A.02.00

Questionable Calibration Skipped Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Calibration Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command : STATus : QUEStionable:CALibration: SKIPped
[:EVENt] ?

Example STAT:QUES.CAL:SKIP?

Preset 0

SCPI Status BitOPC Sequential command

Dependencies

Instrument /W Revision Prior to A.02.00

80 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Skipped Negative Transition

This command determines which bits in the Questionable Calibration Skipped
Condition register will set the corresponding bit in the Questionable Calibration
Skipped Event register when the condition register bit has a negative transition (1
to 0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command : STATus : QUEStionable: CALibration: SKIPped:
NTRansition <integer>

:STATus : QUEStionable:CALibration: SKIPped:

NTRansition?

Example STAT:QUES.CAL:SKIP:NTR 1 Align RF skipped is not
required.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument S’'W Revision Prior to A.02.00

Questionable Calibration Skipped Positive Transition

This command determines which bits in the Questionable Calibration Skipped
Condition register will set the corresponding bit in the Questionable Calibration
Skipped Event register when the condition register bit has a positive transition (0
to 1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration: SKIPped:
PTRansition <integers

:STATus :QUEStionable:CALibration: SKIPped:

PTRansition?

Example STAT:QUES:CAL:SKIP:PTR 1 Align RF skipped is
required.

Preset 32767

SCPI Status BitOPC Sequential command

Dependencies

Min 0

Max 32767

Chapter 2 81

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Instrument SY'W Revision Prior to A.02.00

Questionable Calibration Extended Failure Register

Questionable Calibration Extended Failure Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Calibration Extended Failure Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus :QUEStionable:CALibration:EXTended:

FAILure:CONDition?

Example STAT:QUES.CAL:EXT:FAIL:COND?
Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Instrument S/W Prior to A.02.00

Revision

Questionable Calibration Extended Failure Enable

This command determines which bits in the Questionable Calibration Extended
Failure Condition Register will set bits in the Questionable Calibration Extended
Failure Event register, which aso sets bit 9 of the Questionable Calibration
Register. The variable <integer> is the sum of the decimal values of the bits you
want to enable.

Mode All

Remote Command :STATuUs : QUEStionable:CALibration:EXTended:
FAILure:ENABle <integer>

:STATus : QUEStionable:CALibration: EXTended:
FAILure:ENABle?

Example STAT:QUES:CAL:EXT:FAIL:ENAB 1 Can be used to
query if an EMI conducted alignment is needed.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

82 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Instrument S/'W Prior to A.02.00
Revision
Questionable Calibration Extended Failure Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Cdlibration Extended Failure Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable:CALibration: EXTended:
FAILure [:EVENt] ?

Example STAT:QUES:CAL:EXT:FAIL?
Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

Instrument S/W Prior to A.02.00

Revision

Questionable Calibration Extended Failure Negative Transition

This command determines which bits in the Questionable Calibration Extended
Failure Condition register will set the corresponding bit in the Questionable
Calibration Extended Failure Event register when the condition register bit has a
negativetransition (1to 0). The variable <integer> is the sum of the decimal values
of the bits that you want to enable.

Mode All

Remote Command :STATuUs : QUEStionable:CALibration: EXTended:
FAILure:NTRansition <integer>

:STATuUs : QUEStionable:CALibration: EXTended:
FAILure:NTRansition?

Example STAT:QUES:CAL:EXT:FAIL:NTR 1 EMI conducted align
failure is not required.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Chapter 2 83

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Instrument S'W Revision Prior to A.02.00

Questionable Calibration Extended Failure Positive Transition

This command determines which bits in the Questionable Calibration Extended
Failure Condition register will set the corresponding bit in the Questionable
Calibration Extended Failure Event register when the condition register bit hasa
positive transition (0 to 1). The variable <integer> is the sum of the decimal values
of the bits that you want to enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration:EXTended:
FAILure:PTRansition <integers

:STATus : QUEStionable:CALibration: EXTended:
FAILure:PTRansition?

Example STAT:QUES.CAL:EXT:FAIL:PTR 1 EMI conducted align
failureisrequired.

Preset 32767

SCPI Status BitOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument /W Revision Prior to A.02.00

Questionable Calibration Extended Needed Register

Questionable Calibration Extended Needed Condition
This query returns the decimal value of the sum of the bitsin the Questionable
Cdlibration Extended Needed Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus : QUEStionable:CALibration: EXTended:
NEEDed:CONDition?

Example STAT:QUES.CAL:EXT:NEED:COND?
Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Instrument S/'W Prior to A.02.00

Revision

84 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Extended Needed Enable

This command determines which bits in the Questionable Calibration Extended
Needed Condition Register will set bits in the Questionable Calibration Extended
Needed Event register, which also sets bit 14 of the Questionable Calibration
Register. The variable <integer> is the sum of the decimal values of the bits you

want to enable.

Mode

Remote Command

Example

Preset

SCPI Status BitsOPC
Dependencies

Min
Max

Instrument /W
Revision

All

:STATus : QUEStionable:CALibration: EXTended:
NEEDed:ENABle <integers

:STATus : QUEStionable:CALibration: EXTended:
NEEDed :ENABle?

STAT:QUES:CAL:EXT:NEED:ENAB 2 Can be used to
query if an EMI conducted alignment is needed.

32767

Sequential command

0
32767
Prior to A.02.00

Questionable Calibration Extended Needed Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Calibration Extended Needed Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode

Remote Command

Example
Preset

SCPI Status Bits’OPC
Dependencies

Instrument SW
Revision

All

:STATus : QUEStionable:CALibration: EXTended:
NEEDed [: EVENt] ?

STAT:QUES.CAL:EXT:NEED?
0

Sequential command

Prior to A.02.00

Chapter 2

85

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Extended Needed Negative Transition

This command determines which bits in the Questionable Calibration Extended
Needed Condition register will set the corresponding bit in the Questionable
Calibration Extended Needed Event register when the condition register bit has a
negativetransition (1 to 0). The variable <integer> isthe sum of the decimal values
of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable: CALibration: EXTended:
NEEDed:NTRansition <integers

:STATus : QUEStionable: CALibration: EXTended:
NEEDed :NTRansition?

Example STAT:QUES.CAL:EXT:NEED:NTR 2 Align EMI
conducted is not required.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Instrument /W Revision Prior to A.02.00

Questionable Calibration Extended Needed Positive Transition

This command determines which bits in the Questionable Calibration Extended
Needed Condition register will set the corresponding bit in the Questionable
Cdlibration Extended Needed Event register when the condition register bit hasa
positive transition (0 to 1). The variable <integer> isthe sum of the decimal values
of the bits that you want to enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration:EXTended:
NEEDed:PTRansition <integers>

:STATus :QUEStionable:CALibration:EXTended:
NEEDed:PTRansition?

Example STAT:QUES:CAL:EXT:NEED:PTR 2 Align EMI
conducted is required.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

86 Chapter 2

NOTE

Instrument S'W
Revision

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Prior to A.02.00

Questionable Frequency Register

Questionable Frequency Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Frequency Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode

Remote Command
Example

Preset

SCPI Status Bits'OPC
Dependencies

I nstrument YW
Revision

All

: STATuUs : QUESt ionable: FREQuency: CONDition?
STAT:QUES:FREQ:COND?

0

Sequential command

Prior to A.02.00

Questionable Frequency Enable

This command determines which bits in the Questionable Frequency Condition
Register will set bitsin the Questionable Frequency Event register, which also sets
the Frequency Summary bit (bit 5) in the Questionable Register. The variable
<integer> is the sum of the decimal values of the bits you want to enable.

Mode

Remote Command

Example

Preset

SCPI Status BitsOPC
Dependencies

Min
Max

Instrument S/'W
Revision

All

:STATus : QUESt ionable: FREQuency: ENABle
<integers>

:STATus : QUEStionable: FREQuency: ENABle?

STAT:QUES.FREQ:ENAB 2 Frequency Reference
Unlocked will be reported to the Frequency Summary of the
Status Questionable register.

32767

Sequential command

0
32767
Prior to A.02.00

Chapter 2

87

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Frequency Event Query

This query returns the decimal value of the sum of the bitsin the Questionable

Frequency Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode

Remote Command
Example

Preset

SCPI Status Bits’OPC
Dependencies

Instrument W
Revision

All

:STATus : QUEStionable: FREQuency [: EVENt] ?
STAT:QUES:FREQ?

0

Sequential command

Prior to A.02.00

Questionable Frequency Negative Transition

This command determines which bits in the Questionable Frequency Condition
register will set the corresponding bit in the Questionable Frequency Event register
when the condition register bit has a negative transition (1 to 0). The variable
<integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable: FREQuency:NTRansition
<integers>
: STATuUs : QUEStionable: FREQuency:NTRansition?

Example STAT:QUES:FREQ:NTR 2 Frequency Reference ‘regained
lock” will be reported to the Frequency Summary of the
Status Questionable register.

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00

Revision

88 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Frequency Positive Transition

This command determines which bits in the Questionable Frequency Condition
register will set the corresponding bit in the Questionable Frequency Event register
when the condition register bit has a positive transition (0 to 1). The variable
<integer> is the sum of the decimal values of the bits that you want to enable.

Mode

Remote Command

Example

Preset

SCPI Status Bits’OPC
Dependencies

Min
Max

Instrument W
Revision

All

:STATus : QUEStionable: FREQuency: PTRansition
<integer>

:STATus : QUEStionable: FREQuency: PTRansition?

STAT:QUES.FREQ:PTR 2 Frequency Reference ‘ became
unlocked’ will be reported to the Frequency Summary of the
Status Questionabl e register.

32767

Sequential command

0
32767
Prior to A.02.00

Questionable I ntegrity Register

Questionable I ntegrity Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Integrity Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode

Remote Command
Example

Preset

SCPI Status Bits’OPC
Dependencies

Instrument YW
Revision

All

:STATus :QUEStionable: INTegrity:CONDition?
STAT:QUES:INT:COND?

0

Sequential command

Prior to A.02.00

Chapter 2

89

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable I ntegrity Enable

This command determines which bitsin the Questionable Integrity Condition
Register will set bitsin the Questionable Integrity Event register, which also sets
the Integrity Summary bit (bit 9) in the Questionable Register. The variable
<integer> is the sum of the decimal values of the bits you want to enable.

Mode All
Remote Command :STATuUS : QUEStionable: INTegrity:ENABle
<integers>

:STATus :QUEStionable: INTegrity:ENABle?

Example STAT:QUES.INT:ENAB 8 Measurement Uncalibrated
Summary will be reported to the Integrity Summary of the
Status Questionable register.

Preset 32767

SCPI Status BitsOPC Sequential command
Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00
Revision

Questionable Integrity Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Integrity Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable: INTegrity [:EVENt] ?
Example STAT:QUESIINT?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Instrument S/W Prior to A.02.00

Revision

90 Chapter 2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Integrity Negative Transition

This command determines which bits in the Questionable Integrity Condition
register will set the corresponding bit in the Questionable Integrity Event register
when the condition register bit has a negative transition (1 to 0)

The variable <integer> is the sum of the decimal values of the bits that you want to

enable.

Mode

Remote Command

Example

Preset

SCPI Status BitsOPC
Dependencies

Min
Max

Instrument YW
Revision

All

:STATus : QUEStionable: INTegrity:NTRansition
<integers>

:STATus :QUEStionable: INTegrity:NTRansition?

STAT:QUES.INT:NTR 8 Measurement ‘regained
calibration” Summary will be reported to the Integrity
Summary of the Status Questionabl e register.

0

Sequential command

0
32767
Prior to A.02.00

Questionable I ntegrity Positive Transition

This command determines which bits in the Questionable Integrity Condition
register will set the corresponding bit in the Questionable Integrity Event register
when the condition register bit has a positive transition (0 to 1). The variable
<integer> is the sum of the decimal values of the bits that you want to enable.

Mode

Remote Command

Example

Preset

SCPI Status Bits/OPC
Dependencies

Min

Max

All

:STATus : QUEStionable: INTegrity:PTRansition
<integer>

:STATus :QUEStionable: INTegrity:PTRansition?

STAT:QUES.INT:PTR 8 Measurement ‘ became
uncalibrated” Summary will be reported to the Integrity
Summary of the Status Questionable register.

32767

Sequential command

32767

Chapter 2

91

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Instrument S/W Prior to A.02.00
Revision
Questionable I ntegrity Signal Register

Questionable Integrity Signal Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Integrity Signal Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal:
CONDition?

Example STAT:QUES:INT:SIGN:COND?

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Instrument S/W Revision Prior to A.02.00

Questionable Integrity Signal Enable

This command determines which bitsin the Questionable Integrity Signal

Condition Register will set bitsin the Questionable Integrity Signal Event register,
which also setsthe Integrity Summary bit (bit 9) in the Questionable Register. The
variable <integer> is the sum of the decimal values of the bits you want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal :ENABle
<integers>

:STATus : QUEStionable: INTegrity:SIGNal : ENABle?

Example STAT:QUES:INT:SIGN:ENAB 4 Burst Not Found will be
reported to the Integrity Summary of the Status Questionable
register.

Preset 32767

SCPI StatusBitsOPC Seguential command

Dependencies

Min 0

Max 32767

Instrument S/W Prior to A.02.00

Revision

92 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Integrity Signal Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Integrity Signal Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal [: EVENt] ?
Example STAT:QUESINT:SIGN?

Preset 0

SCPI Status Sequential command

Bits/OPC

Dependencies

Instrument S/'W Prior to A.02.00

Revision

Questionable Integrity Signal Negative Transition

This command determines which bits in the Questionable Integrity Signal
Condition register will set the corresponding bit in the Questionable Integrity
Signal Event register when the condition register bit has a negative transition (1 to
0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All
Remote : STATus : QUEStionable: INTegrity:SIGNal :NTRansition
Command <integer>

: STATuUs : QUEStionable: INTegrity:SIGNal :NTRansition
2

Example STAT:QUES:INT:SIGN:NTR 4 Burst found will be reported to the
Integrity Summary of the Status Questionable register.

Preset 0

SCPI Status Sequential command

Bits’OPC

Dependencies

Min 0

Max 32767

Instrument W Prior to A.02.00
Revision

Chapter 2 93

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Integrity Signal Positive Transition

This command determines which bitsin the Questionable Integrity Signal
Condition register will set the corresponding bit in the Questionable Integrity
Signal Event register when the condition register bit has a positive transition (0 to
1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All
Remote :STATus : QUEStionable: INTegrity:SIGNal: PTRansition
Command <integers>

:STATus : QUEStionable: INTegrity:SIGNal: PTRansition
2

Example STAT:QUES.INT:SIGN:PTR 4 Burst not found will be reported to
the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Sequential command

Bits/OPC

Dependencies

Min 0

Max 32767

Instrument YW Prior to A.02.00
Revision
Questionable I ntegrity Uncalibrated Register

Questionable Integrity Uncalibrated Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Integrity Uncalibrated Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated:
CONDition?

Example STAT:QUES.INT:UNC:COND?

Preset 0

SCPI StatusBitsOPC Sequential command

Dependencies

Instrument S/'W Prior to A.02.00

Revision

94 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Questionable Integrity Uncalibrated Enable

This command determines which bits in the Questionable Integrity Uncalibrated
Condition Register will set bits in the Questionable Integrity Uncalibrated Event
register, which also sets the Data Uncalibrated Summary bit (bit 3) in the
Questionable Integrity Register. The variable <integer> is the sum of the decimal
values of the bits you want to enable.

Mode All

Remote Command :STATus :QUEStionable: INTegrity:UNCalibrated:
ENABle
:STATus :QUEStionable: INTegrity:UNCalibrated:
ENABle?

Example STAT:QUES.INT:UNC:ENAB 1 Oversweep (Meas Uncal)

will be reported to the Integrity Summary of the Status
Questionable register.

Preset 32767

SCPI StatusBitOPC Sequential command
Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00
Revision

Questionable Integrity Uncalibrated Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Integrity Uncalibrated Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated[:
EVENt] ?

Example STAT:QUESINT:UNC?

Preset 0

SCPI Status Sequential command

BitsOPC

Dependencies

Chapter 2 95

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Instrument W Prior to A.02.00
Revision

Questionable I ntegrity Uncalibrated Negative Transition

This command determines which bits in the Questionable Integrity Uncalibrated
Condition register will set the corresponding bit in the Questionable Integrity
Uncalibrated Event register when the condition register bit has a negative
transition (1 to 0). The variable <integer> is the sum of the decimal values of the
bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated:
NTRansition <integers>

:STATuUs :QUEStionable: INTegrity:UNCalibrated:

NTRansition?

Example STAT:QUES:INT:UNC:NTR 1 Oversweep cleared will be
reported to the Integrity Summary of the Status Questionable
register.

Preset 0

SCPI Status BitOPC ~ Sequential command

Dependencies

Min 0

Max 32767

Instrument S’'W Prior to A.02.00

Revision

Questionable Integrity Uncalibrated Positive Transition

This command determines which bitsin the Questionable Integrity Uncalibrated
Condition register will set the corresponding bit in the Questionable Integrity
Uncalibrated Event register when the condition register bit has a positive transition
(Oto 1). Thevariable <integer> isthe sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated:
PTRansition <integers

:STATuUs :QUESt ionable: INTegrity:UNCalibrated:
PTRansition?

Example STAT:QUES.INT:UNC:PTR 1 Oversweep (Meas Uncal)
occurred will be reported to the Integrity Summary of the
Status Questionable register.

96 Chapter 2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Preset 32767

SCPI Status BitOPC Sequential command
Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00
Revision

Questionable Power Register

Questionable Power Condition

This query returns the decimal value of the sum of the bits in the Questionable
Power Condition register.

The datain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus : QUEStionable : POWer : CONDition?
Example STAT:QUES:POW:COND?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Instrument /W Prior to A.02.00

Revision

Questionable Power Enable

This command determines which bits in the Questionable Power Condition
Register will set bitsin the Questionable Power Event register, which also setsthe
Power Summary bit (bit 3) in the Questionable Register. The variable <integer> is
the sum of the decimal values of the bits you want to enable.

Mode All

Remote Command :STATus : QUEStionable: POWer:ENABle <integers

:STATus : QUEStionable: POWer : ENABle?

Example STAT:QUES:POW:ENAB 32 50 MHz Input Pwr too High
for Cal will be reported to the Power Summary of the Status
Questionabl e register.

Preset 32767

Chapter 2 97

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

SCPI Status BitsOPC Sequential command
Dependencies

Min 0

Max 32767
Instrument W Prior to A.02.00
Revision

Questionable Power Event Query

This query returns the decimal value of the sum of the bitsin the Questionable

Power Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is

latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command : STATus : QUEStionable: POWer [: EVENt] ?
Example STAT.QUES.POW?

Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

Instrument /W Prior to A.02.00
Revision

Questionable Power Negative Transition

This command determines which bits in the Questionable Power Condition
register will set the corresponding bit in the Questionable Power Event register
when the condition register bit has a negative transition (1 to 0). The variable
<integer> isthe sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable: POWer :NTRansition

<integers>

:STATus : QUEStionable : POWer :NTRansition?

OK for Cal will be reported to the Power Summary of the

Example STAT:QUES:POW:NTR 32 50 MHz Input Power became
Status Questionabl e register.
Preset 0

SCPI Status BitOPC Sequential command
Dependencies

98

Chapter2

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Min 0

Max 32767
Instrument W Prior to A.02.00
Revision

Questionable Power Positive Transition

This command determines which bits in the Questionable Power Condition
register will set the corresponding bit in the Questionable Power Event register
when the condition register bit has a positive transition (0 to 1). The variable
<integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable: POWer: PTRansition
<integer>

:STATus : QUEStionable : POWer : PTRansition?>

Example STAT:QUES:POW:PTR 32 50 MHz Input Power became
too high for Cal will be reported to the Power Summary of
the Status Questionable register.

Preset 32767

SCPI Status BitsOPC Sequential command
Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00
Revision

Questionable Temper ature Register

Questionable Temperature Condition

This query returns the decimal value of the sum of the bitsin the Questionable
Temperature Condition register.

Thedatain thisregister is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus : QUEStionable: TEMPerature: CONDition?
Example STAT:QUES.TEMP:COND?

Preset 0

Chapter 2 99

NOTE

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

SCPI Status BitOPC Sequential command
Dependencies

Instrument S/'W Prior to A.02.00
Revision
Questionable Temperature Enable

This command determines which bitsin the Questionable Temperature Condition
Register will set bitsin the Questionable Temperature Event register, which also
sets the Temperature Summary bit (bit 4) in the Questionable Register. The
variable <integer> is the sum of the decimal values of the bits you want to enable.

Mode All

Remote Command :STATus : QUESt ionable : TEMPerature : ENARle
<integer>

:STATus : QUEStionable: TEMPerature: ENARle?

Example STAT:QUES:TEMP:ENAB 1 Reference Oscillator Oven
Cold will be reported to the Temperature Summary of the
Status Questionabl e register.

Preset 32767

SCPI Status BitsOPC Sequential command
Dependencies

Min 0

Max 32767
Instrument YW Prior to A.02.00
Revision

Questionable Temperature Event Query

This query returns the decimal value of the sum of the bitsin the Questionable
Temperature Event register.

The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared

Mode All

Remote Command : STATuUS : QUEStionable: TEMPerature [: EVENt] ?
Example STAT:QUES.TEMP?

Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

100 Chapter2

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

Instrument W Prior to A.02.00
Revision

Questionable Temperature Negative Transition

This command determines which bits in the Questionable Temperature Condition
register will set the corresponding bit in the Questionable Temperature Event
register when the condition register bit has a negative transition (1 to 0). The
variable <integer> is the sum of the decimal values of the bits that you want to
enable.

Mode All

Remote Command : STATus : QUEStionable: TEMPerature:NTRansition
<integers>

:STATus : QUEStionable: TEMPerature:NTRansition
2

Example STAT:QUES.TEMP:NTR 1 Reference Oscillator Oven not
cold will be reported to the Temperature Summary of the
Status Questionable register.

Preset 0

SCPI Status BitsOPC ~ Sequential command

Dependencies

Min 0

Max 32767

Instrument S'W Prior to A.02.00

Revision

Questionable Temper ature Positive Transition

This command determines which bits in the Questionable Temperature Condition
register will set the corresponding bit in the Questionable Temperature Event
register when the condition register bit has a positive transition (O to 1). The
variable <integer> is the sum of the decimal values of the bits that you want to
enable.

Mode All

Remote Command : STATus : QUESt ionable: TEMPerature: PTRansition
<integer>

:STATus : QUEStionable: TEMPerature: PTRansition?

Example STAT:QUES.TEMP:PTR 1 Reference Oscillator Oven became
cold will be reported to the Temperature Summary of the Status
Questionabl e register.

Preset 32767

Chapter 2 101

Programming Fundamentals
STATus Subsystem (No equivalent front-panel keys)

SCPI Status Sequential command
Bits/OPC
Dependencies
Min 0
Max 32767
Instrument S'W Prior to A.02.00
Revision
102 Chapter 2

Programming Examples

The programming examples were written for use on an IBM compatible PC.

e The programming examples use C, Visual Basic, or VEE programming
languages.

¢ The programming examples use VISA interfaces (GPIB, LAN, or USB).
* Some of the examples use the IVI-COM drivers.

Interchangeable Virtual Instruments COM (1VI-COM) drivers: Develop system
automation software easily and quickly. IVI-COM driverstake full advantage
of application development environments such as Visual Studio using Visual
Basic, C# or Visual C++ aswell as Agilent's Test and Measurement Toolkit.
You can now develop application programs that are portabl e across computer
platformsand I/O interfaces. With IVI-COM driversyou do not need to havein
depth test instrument knowledge to devel op sophisticated measurement
software. IVI-COM drivers provide a compatible interface to al. COM
environments. The IVI-COM software drivers can be found at the URL :
http://www.agilent.com/find/ivi-com

* Most of the examples are writtenin C, Visual Basic, VEE, or LabVlew using
the Agilent VISA transition library.

The Agilent 1/O Libraries Suite must be installed and the GPIB card, USB to
GPIB interface, or Lan interface USB interface configured. The latest Agilent
I/O Libraries Suite is available: www.agilent.com/find/iolib

e The STATus subsystem of commands is used to monitor and query hardware
status. These hardware registers monitor various events and conditionsin the
instrument. Details about the use of these commands and registers can be found
in the manual/help in the Utility Functions section on the STATus subsystem.

Visual Basic isaregistered trademark of Microsoft Corporation.

103

http://www.agilent.com/find/ivi-com
http://www.agilent.com/find/ivi-com
www.agilent.com/find/iolib

NOTE

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples

X-Series Spectrum Analyzer Mode Programing
Examples

The following examples work with Spectrum Analyzer mode. These examples use
one of the following programming languages. Visual Basic® 6, Visual
Basic.NET®, MS Excel®, C++, ANSI C, C#NET, and Agilent VEE Pro.

These examples are available in either the “ progexamples’ directory on the Agilent
Technologies Spectrum Analyzer documentation CD-ROM or the “ progexamples’
directory in the analyzer. Thefile namesfor each exampleislisted at the end of the
example description. The examples can also be found on the Agilent Technologies,
Inc. web siteat URL :

http://www.agilent.com/find/sa_programming

These examples have all been tested and validated as functional in the Spectrum
Analyzer mode. They have not been tested in all other modes. However, they
should work in all other modes except where exceptions are noted.

Programming using Visual Basic® 6, Visual Basic.NET® and MS Excel®:
» Transfer Screen Images from your Spectrum Analyzer using Visual Basic 6

This example program stores the current screen image on the instrument flash
memory as“D:\PICTURE.PNG". It then transfers the image over GPIB or LAN
and stores the image on your PC in the current directory as“PICTURE.PNG”.
Thefile “D:\PICTURE.PNG” is then deleted on the instrument flash memory.

File name: _screen.bas
» Binary Block Trace data transfer from your Spectrum Analyzer using Visual
Basic 6

This example program queries the IDN string from the instrument and then
reads the trace datain Spectrum Analysis mode in binary format (Real,32 or
Real,64 or Int,32). The datais then stored to afile “bintracetxt”. This data
transfer method is faster than the default ASCI| transfer mode, because less
datais sent over the bus.

File name; bintrace.bas

104 Chapter 3

http://www.agilent.com/find/sa_programming

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples

Programming using C++, ANS C and C#.NET:
e Serial Poll for Sweep Complete using C++
This example demonstrates how to:

1. Perform an instrument sweep.
2. Poll theinstrument to determine when the operation is complete.
3. Perform an instrument sweep.

File name: _Sweep.c

* Service Request Method (SRQ) determines when a measurement is done by
waiting for SRQ and reading Status Register using C++.

This example demonstrates how:

1. Set the service request mask to assert SRQ when either a measurement is
uncalibrated or an error message has occurred,

2. Initiate a sweep and wait for the SRQ interrupt,

3. Pall al instruments and report the nature of the * interrupt on the spectrum
analyzer.

The STATus subsystem of commands is used to monitor and query hardware
status. These hardware registers monitor various events and conditions in the
instrument. Details about the use of these commands and registers can be found
in the manual/help in the Utility Functions section on the STATus subsystem.

Filename: SRQ.C
« Relative Band Power Markers using C++

This example demonstrates how to set markers as Band Power Markers and
obtain their band power relative to another specified marker.

Filename: BPM.c
» Trace Detector/Couple Markers using C++
This example demonstrates how to:

1. Set different types of traces (max hold, clear and write, min hold)
2. Set markers to specified traces
3. Couple markers

Note: The Spectrum Analyzer is capable of multiple simultaneous detectors
(i.e. peak detector for max hold, sample for clear and write, and negative peak
for min hold).

File name: _tracecouple.c

Chapter 3 105

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples

Phase Noise using C++
This example demonstrates how to:

1. Remove instrument noise from the phase noise
2. Calculate the power difference between 2 traces

File name: _phasenoise.c

Programming using Agilent VEE Pro:

Transfer Screen Images from my Spectrum Analyzer using Agilent VEE Pro

This example program stores the current screen image on the instrument flash
memory as “D:\scr.png” . It then transfers the image over GPIB and stores the
image on your PC in the desired directory as “ capturegif”. The file “ D:\scr.png”
is then deleted on the instrument flash memory.

File name: _ScreenCapture.vee
Transfer Trace Data data transfer using Agilent VEE Pro

This example program transfers the trace data from your Spectrum Analyzer.
The program gueries the IDN string from the instrument and supports Integer
32, real 32, real 64 and ASCII data. The program returns 1001 trace points for
the signal analyzer.

File name; transfertrace.vee

106 Chapter 3

Programming Examples
89601X VXA Signal Analyzer Programming Examples

NOTE

89601X VXA Signal Analyzer Programming Examples

The following examples work with 89601X VXA Signal Analyzer Mode. These
examples use one of the following programming languages:. Visua Bas ®s,
Visua Studio 2003 .NET®, and Agilent VEE Pro.

These examples are available in either the “ progexamples’ directory on the Agilent
Technologies 89601X VXA documentation CD-ROM or the “ progexamples’
directory inthe analyzer. Thefile namesfor each exampleislisted at the end of the
example description. The examples can also be found on the Agilent Technol ogies,
Inc. web siteat URL:

http://www.agilent.com/find/sa_programming

These examples have all been tested and validated as functional in 89601X VXA
Signal Analyzer Mode.
Programming using Visual Basic® 6 and Visual Basic.NET®:
» Setting up a Vector Measurement on your 89601X VXA using Visual Basic 6.
This example program:
— Setsup the VSA Mode.
— Sets the Vector Measurement.
— Configures the Viector Measurement.
— Starts the Vector Measurement.
— Readsthe trace datain Real 64 data format
File name: VXA-MeasDemo.vbs

e Setting up aDigital Demod Measurement on your 89601x VXA using Visual
Basic 6.

This example program:

— Setsup the VSA Mode.

— Sets the Digital Demod M easurement.

— Configures the Digital Demod M easurement.

— Starts the Digital Measurement.

— Reads the trace data, EVM, and demodul ated bits.
File name: VXA-DigDemodDemo.vbs

Chapter 3 107

http://www.agilent.com/find/sa_programming

Programming Examples
89601X VXA Signal Analyzer Programming Examples

Programming using Agilent VEE Pro:
e Setting up aVSA Measurement on your 89601X VXA using VEE.
This example program:
— Setsup the VSA Mode.
— Sets the Vector Measurement.
— Configures the Vector Measurement.
— Starts the Vector Measurement.
— Reads the trace datain Real 32, Rea 64 and ASCII dataformat
File name: VXA-MeasDemo.vee
» Setting up aDigital Demod Measurement on your 89601X VXA VEE.
This example program:
— Setsup the VSA Mode.
— Setsthe Digital Demod M easurement.
— Configuresthe Digital Demod M easurement.
— Startsthe Digital Measurement.
— Reads the trace data, EVM, and demodulated bits.

File name: VXA-DigDemodDemo.vee

Programming using Visual Sudio® 2003 .NET:
» Setting up aVSA Measurement on your 89601X VXA using Visual Basic 6.
This example program:
— Sets up the VSA Mode.
— Setsthe Vector Measurement.
— Configures the Vector M easurement.
— Starts the Vector Measurement.
— Reads the trace datain Real 64 data format
File name: VXA-MeasDemo.sin

108 Chapter 3

Programming Examples
89601X VXA Signal Analyzer Programming Examples

e Setting up aDigital Demod Measurement on your 89601X VXA using Visual
Basic 6.

This example program:

— Setsup the VSA Mode.

— Setsthe Digital Demod M easurement.

— Configures the Digital Demod M easurement.

— Starts the Digital Measurement.

— Reads the trace data, EVM, and demodul ated bits.
File name: VXA-DigDemodDemo.sin

Chapter 3 109

Programming Examples
89601X VXA Signal Analyzer Programming Examples

110 Chapter 3

	X-Series Programmer’s Guide
	Table of Contents
	1 Introduction to Programming X-Series Applications
	What Programming Information is Available?
	Using Embedded Help for Programming
	Using the Help System on Your PC
	Help System Features Especially Useful for Programmers

	Communicating SCPI Using Telnet
	Overview of the GPIB
	GPIB Command Statements

	SCPI Measurement Commands
	Measurement Group of Commands
	Common Measurement Commands

	2 Programming Fundamentals
	SCPI Language Basics
	Command Keywords and Syntax
	Creating Valid Commands
	Special Characters in Commands
	Parameters in Commands
	Putting Multiple Commands on the Same Line

	Improving Measurement Speed
	Turn off the display updates
	Use binary data format instead of ASCII
	Minimize the number of GPIB transactions
	Consider using USB or LAN instead of GPIB
	Minimize DUT/instrument setup changes
	Avoid unnecessary use of *RST
	Avoid automatic attenuator setting
	Avoid using RFBurst trigger for single burst signals
	N9071A: Optimize your GSM output RF spectrum switching measurement
	Making power measurements on multiple bursts or slots? Use CALCulate:DATA<n>:COMPress?
	For More Information

	Programming in C Using the VTL
	Typical Example Program Contents
	Linking to VTL Libraries
	Compiling and Linking a VTL Program
	Example Program
	Including the VISA Declarations File
	Opening a Session
	Device Sessions
	Addressing a Session
	Closing a Session

	For More Information
	STATus Subsystem (No equivalent front-panel keys)
	Detailed Description
	STATus Subsystem Command Descriptions

	3 Programming Examples
	X-Series Spectrum Analyzer Mode Programing Examples
	89601X VXA Signal Analyzer Programming Examples

